Around the circular law

These expository notes are centered around the circular law theorem, which states that the empirical spectral distribution of a nxn random matrix with i.i.d. entries of variance 1/n tends to the uniform law on the unit disc of the complex plane as the dimension $n$ tends to infinity. This phenomenon is the non-Hermitian counterpart of the semi circular limit for Wigner random Hermitian matrices, and the quarter circular limit for Marchenko-Pastur random covariance matrices. We present a proof in a Gaussian case, due to Silverstein, based on a formula by Ginibre, and a proof of the universal case by revisiting the approach of Tao and Vu, based on the Hermitization of Girko, the logarithmic potential, and the control of the small singular values. Beyond the finite variance model, we also consider the case where the entries have heavy tails, by using the objective method of Aldous and Steele borrowed from randomized combinatorial optimization. The limiting law is then no longer the circular law and is related to the Poisson weighted infinite tree. We provide a weak control of the smallest singular value under weak assumptions, using asymptotic geometric analysis tools. We also develop a quaternionic Cauchy-Stieltjes transform borrowed from the Physics literature.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  J. Littlewood,et al.  On the Number of Real Roots of a Random Algebraic Equation , 1938 .

[3]  H. Weyl Inequalities between the Two Kinds of Eigenvalues of a Linear Transformation. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Bent Fuglede,et al.  DETERMINANT THEORY IN FINITE FACTORS , 1952 .

[5]  A. Horn On the eigenvalues of a matrix with prescribed singular values , 1954 .

[6]  J. M. Hammersley,et al.  The Zeros of a Random Polynomial , 1956 .

[7]  Harry Kesten,et al.  Symmetric random walks on groups , 1959 .

[8]  G. Samal On the Number of Real Roots of a Random Algebraic Equation , 1962 .

[9]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[10]  M. Fiedler,et al.  Matrix Inequalities , 1966 .

[11]  Real Zeros of Random Polynomials , 1968 .

[12]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[13]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[14]  N. Maslova On the Variance of the Number of Real Roots of Random Polynomials , 1974 .

[15]  N. Maslova On the Distribution of the Number of Real Roots of Random Polynomials , 1975 .

[16]  P. Meyer,et al.  Probabilities and potential C , 1978 .

[17]  Z. Luo THE AVERAGE NUMBER OF REAL ROOTS OF A RANDOM ALGEBRAIC EQUATION , 1980 .

[18]  Joel Zinn,et al.  Convergence to a Stable Distribution Via Order Statistics , 1981 .

[19]  B. McKay The expected eigenvalue distribution of a large regular graph , 1981 .

[20]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[21]  Z. D. Bai,et al.  Limiting behavior of the norm of products of random matrices and two problems of Geman-Hwang , 1986 .

[22]  K. Farahmand On the Average Number of Real Roots of a Random Algebraic Equation , 1986 .

[23]  Correction: On the Average Number of Real Roots of a Random Algebraic Equation , 1987 .

[24]  A. Edelman Eigenvalues and condition numbers of random matrices , 1988 .

[25]  J. W. Silverstein,et al.  A note on the largest eigenvalue of a large dimensional sample covariance matrix , 1988 .

[26]  Niklaus Wirth,et al.  Algorithms and Data Structures , 1989, Lecture Notes in Computer Science.

[27]  Colin McDiarmid,et al.  Surveys in Combinatorics, 1989: On the method of bounded differences , 1989 .

[28]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[29]  Vi︠a︡cheslav Leonidovich Girko,et al.  Theory of random determinants , 1990 .

[30]  A. Andrews Eigenvalues and singular values of certain random matrices , 1990 .

[31]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[32]  D. Aldous Asymptotics in the random assignment problem , 1992 .

[33]  Eric Kostlan,et al.  On the spectra of Gaussian matrices , 1992 .

[34]  Alexandru Nica,et al.  Free random variables , 1992 .

[35]  Alexandru Nica,et al.  Free random variables : a noncommutative probability approach to free products with applications to random matrices, operator algebras, and harmonic analysis on free groups , 1992 .

[36]  Z. Bai,et al.  Limit of the smallest eigenvalue of a large dimensional sample covariance matrix , 1993 .

[37]  S. Smale,et al.  Complexity of Bezout’s Theorem II Volumes and Probabilities , 1993 .

[38]  D. Voiculescu The analogues of entropy and of Fisher's information measure in free probability theory, I , 1993 .

[39]  E. Kostlan On the Distribution of Roots of Random Polynomials , 1993 .

[40]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[41]  A. Edelman,et al.  How many eigenvalues of a random matrix are real , 1994 .

[42]  Harold Widom Eigenvalue Distribution for Nonselfadjoint Toeplitz Matrices , 1994 .

[43]  J. Bouchaud,et al.  Theory of Lévy matrices. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  The Circular Law: ten years later , 1994 .

[45]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[46]  J. W. Silverstein THE SPECTRAL RADII AND NORMS OF LARGE DIMENSIONAL NON-CENTRAL RANDOM MATRICES , 1994 .

[47]  L. Shepp,et al.  The Complex Zeros of Random Polynomials , 1995 .

[48]  T. Stieltjes Recherches sur les fractions continues , 1995 .

[49]  Alan Edelman,et al.  How many zeros of a random polynomial are real , 1995 .

[50]  A. Edelman,et al.  Erratum to “How many zeros of a random polynomial are real?” , 1996 .

[51]  A. Edelman The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law , 1997 .

[52]  A. Zee,et al.  Non-gaussian non-hermitian random matrix theory: Phase transition and addition formalism , 1997 .

[53]  V. L. GIRKO Strong Circular Law , 1997 .

[54]  A. Zee,et al.  Non-hermitian random matrix theory: Method of hermitian reduction , 1997 .

[55]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[56]  G. B. Arous,et al.  Large deviations from the circular law , 1998 .

[57]  Øyvind Ryan On the Limit Distributions of Random Matrices with Independent or Free Entries , 1998 .

[58]  F. Hiai,et al.  Logarithmic energy as entropy functional , 1998 .

[59]  P. Biane,et al.  Computation of some examples of Brown's spectral measure in free probability , 1999, math/9912242.

[60]  Random Analytic Chaotic Eigenstates , 1999, chao-dyn/9901019.

[61]  I. Goldsheid,et al.  Eigenvalue curves of asymmetric tridiagonal random matrices , 2000, math-ph/0011003.

[62]  U. Haagerup,et al.  Brown's Spectral Distribution Measure for R-Diagonal Elements in Finite von Neumann Algebras☆ , 2000 .

[63]  A. Guionnet,et al.  CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES , 2000 .

[64]  M. Ledoux The concentration of measure phenomenon , 2001 .

[65]  V. Girko,et al.  Theory of stochastic canonical equations , 2001 .

[66]  Steve Zelditch,et al.  EQUILIBRIUM DISTRIBUTION OF ZEROS OF RANDOM POLYNOMIALS , 2002 .

[67]  Random Regularization of Brown Spectral Measure , 2001, math/0105109.

[68]  On the remarkable spectrum of a non-Hermitian random matrix model , 2002, math-ph/0204015.

[69]  Boris A Khoruzhenko,et al.  The Thouless formula for random non-Hermitian Jacobi matrices , 2003 .

[71]  Shang-Hua Teng,et al.  Smoothed Analysis (Motivation and Discrete Models) , 2003, WADS.

[72]  B. Rider A limit theorem at the edge of a non-Hermitian random matrix ensemble , 2003 .

[73]  The Strong Circular Law. Twenty years later. Part II , 2004 .

[74]  J. Michael Steele,et al.  The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .

[75]  T. Tao,et al.  Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2005, math/0511215.

[76]  The Circular Law. Twenty years later. Part III , 2005 .

[77]  Jean-Pierre Jouannaud,et al.  Twenty Years Later , 2005, RTA.

[78]  Daniel A. Spielman The Smoothed Analysis of Algorithms , 2005, FCT.

[79]  L. Trefethen Spectra and pseudospectra , 2005 .

[80]  Yuval Peres,et al.  Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process , 2003, math/0310297.

[81]  Advances in statistics , 2005 .

[82]  A. Edelman,et al.  Random matrix theory , 2005, Acta Numerica.

[83]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[84]  Jean-Marc Azaïs,et al.  On the Roots of a Random System of Equations. The Theorem of Shub and Smale and Some Extensions , 2005, Found. Comput. Math..

[85]  M. Rudelson,et al.  Smallest singular value of random matrices and geometry of random polytopes , 2005 .

[86]  K. Johansson From Gumbel to Tracy-Widom , 2005, math/0510181.

[87]  Uffe Haagerup,et al.  Brown measures of unbounded operators affiliated with a finite von Neumann algebra , 2006 .

[88]  B. Rider,et al.  The Noise in the Circular Law and the Gaussian Free Field , 2006, math/0606663.

[89]  J. W. Silverstein,et al.  Gaussian fluctuations for non-Hermitian random matrix ensembles , 2005, math/0502400.

[90]  Thomas Bloom,et al.  ZEROS OF RANDOM POLYNOMIALS ON C m , 2006 .

[91]  S. Chatterjee A generalization of the Lindeberg principle , 2005, math/0508519.

[92]  D. Aldous,et al.  Processes on Unimodular Random Networks , 2006, math/0603062.

[93]  General tridiagonal random matrix models, limiting distributions and fluctuations , 2006, math/0610827.

[94]  T. Tao,et al.  RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.

[95]  Towards non-Hermitian random levy matrices , 2007 .

[96]  M. Rudelson,et al.  The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.

[97]  G. Akemann,et al.  Integrable Structure of Ginibre’s Ensemble of Real Random Matrices and a Pfaffian Integration Theorem , 2007, math-ph/0703019.

[98]  G. B. Arous,et al.  The Spectrum of Heavy Tailed Random Matrices , 2007, 0707.2159.

[99]  Dmitry Panchenko,et al.  On one property of Derrida–Ruelle cascades , 2007 .

[100]  J. W. Silverstein,et al.  On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices , 2007 .

[101]  Adityanand Guntuboyina,et al.  Concentration of the spectral measure of large Wishart matrices with dependent entries , 2008, 0810.2753.

[102]  H. Yau,et al.  Wegner estimate and level repulsion for Wigner random matrices , 2008, 0811.2591.

[103]  T. Tao,et al.  From the Littlewood-Offord problem to the Circular Law: universality of the spectral distribution of random matrices , 2008, 0810.2994.

[104]  Charles Bordenave,et al.  Circular law theorem for random Markov matrices , 2008, Probability Theory and Related Fields.

[105]  Terence Tao,et al.  Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.

[106]  Probability in Mathematics , 2008 .

[107]  Satya N. Majumdar,et al.  Real Roots of Random Polynomials and Zero Crossing Properties of Diffusion Equation , 2008, 0803.4396.

[108]  COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW , 2008 .

[109]  Peter J. Forrester,et al.  Derivation of an eigenvalue probability density function relating to the Poincaré disk , 2009, 0906.5223.

[110]  T. Tao,et al.  Random Matrices: the Distribution of the Smallest Singular Values , 2009, 0903.0614.

[111]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[112]  Amir Dembo,et al.  Spectral Measure of Heavy Tailed Band and Covariance Random Matrices , 2008, 0811.1587.

[113]  T. Rogers,et al.  Cavity approach to the spectral density of non-Hermitian sparse matrices. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[114]  Tiefeng Jiang,et al.  Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles , 2009 .

[115]  Mark W. Meckes,et al.  Some results on random circulant matrices , 2009, 0902.2472.

[116]  Yuval Peres,et al.  Zeros of Gaussian Analytic Functions and Determinantal Point Processes , 2009, University Lecture Series.

[117]  G. Akemann,et al.  Gap probabilities in non-Hermitian random matrix theory , 2009, 0901.0897.

[118]  Ofer Zeitouni,et al.  The single ring theorem , 2009, 0909.2214.

[119]  Russell Lyons,et al.  Identities and Inequalities for Tree Entropy , 2007, Combinatorics, Probability and Computing.

[120]  A. Guionnet,et al.  An Introduction to Random Matrices , 2009 .

[121]  C. Sinclair,et al.  The Ginibre Ensemble of Real Random Matrices and its Scaling Limits , 2008, 0805.2986.

[122]  Jean Bourgain,et al.  On the singularity probability of discrete random matrices , 2009, 0905.0461.

[123]  O. Zeitouni,et al.  Large Deviations of Empirical Measures of Zeros of Random Polynomials , 2010 .

[124]  Alexander Tikhomirov,et al.  The circular law for random matrices , 2007, 0709.3995.

[125]  Tim Rogers,et al.  Universal sum and product rules for random matrices , 2009, 0912.2499.

[126]  Martin Bender,et al.  Edge scaling limits for a family of non-Hermitian random matrix ensembles , 2008, 0808.2608.

[127]  Alexander Tikhomirov,et al.  On the Asymptotic Spectrum of Products of Independent Random Matrices. , 2010, 1012.2710.

[128]  Ofer Zeitouni,et al.  Support convergence in the single ring theorem , 2010, 1012.2624.

[129]  Djalil Chafaï The Dirichlet Markov Ensemble , 2010, J. Multivar. Anal..

[130]  A. Soshnikov,et al.  Products of Independent non-Hermitian Random Matrices , 2010, 1012.4497.

[131]  Andrew L. Goldman The Palm measure and the Voronoi tessellation for the Ginibre process , 2006, math/0610243.

[132]  Djalil CHAFAÏ,et al.  Circular Law for Noncentral Random Matrices , 2007, 0709.0036.

[133]  P. Forrester Log-Gases and Random Matrices , 2010 .

[134]  Terence Tao,et al.  Smooth analysis of the condition number and the least singular value , 2008, Math. Comput..

[135]  T. Tao Outliers in the spectrum of iid matrices with bounded rank perturbations , 2010 .

[136]  Wang Zhou,et al.  Circular law, extreme singular values and potential theory , 2010, J. Multivar. Anal..

[137]  André Galligo,et al.  Random polynomials and expected complexity of bisection methods for real solving , 2010, ISSAC.

[138]  Allan Sly,et al.  Properties of Uniform Doubly Stochastic Matrices , 2010, 1010.6136.

[139]  C. Bordenave On the spectrum of sum and product of non-hermitian random matrices , 2010, 1010.3087.

[140]  C. Bordenave,et al.  Spectrum of Non-Hermitian Heavy Tailed Random Matrices , 2010, 1006.1713.

[141]  ON THE DISTRIBUTION OF COMPLEX ROOTS OF RANDOM POLYNOMIALS WITH HEAVY-TAILED COEFFICIENTS , 2011, 1104.5360.

[142]  Charles Bordenave,et al.  Spectrum of large random reversible Markov chains: Heavy-tailed weights on the complete graph , 2009, 0903.3528.

[143]  L. Shepp,et al.  Expected Number of Real Zeros of a Random Polynomial with Independent Identically Distributed Symmetric Long-Tailed Coefficients , 2011 .

[144]  Philip Matchett Wood,et al.  Convergence of the spectral measure of non normal matrices , 2011, 1110.2471.

[145]  RANDOM RIGHT EIGENVALUES OF GAUSSIAN QUATERNIONIC MATRICES , 2011, 1104.4455.

[146]  R. Adamczak On the Marchenko-Pastur and Circular Laws for some Classes of Random Matrices with Dependent Entries , 2011 .

[147]  Djalil Chafaï,et al.  Interactions between compressed sensing, random matrices, and high dimensional geometry , 2012 .

[148]  C. Bordenave,et al.  The circular law , 2012 .

[149]  T. Tao Topics in Random Matrix Theory , 2012 .

[150]  Tiefeng Jiang,et al.  Circular law and arc law for truncation of random unitary matrix , 2012 .

[151]  Philip Matchett Wood Universality and the circular law for sparse random matrices. , 2010, 1010.1726.

[152]  André Galligo,et al.  Roots of the derivatives of some random polynomials , 2010, SNC '11.

[153]  Madan Lal Mehta,et al.  Random Matrices and the Statistical Theory of Energy Levels , 2014 .

[154]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[155]  T. Tao,et al.  Random Matrices: a General Approach for the Least Singular Value Problem , 2022 .