暂无分享,去创建一个
Pavol Hell | Arash Rafiey | Benoît Larose | László Egri | P. Hell | B. Larose | A. Rafiey | László Egri
[1] Peter Jeavons,et al. Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..
[2] D. Hobby,et al. The structure of finite algebras , 1988 .
[3] Gerard J. Chang,et al. Quasi-threshold Graphs , 1996, Discret. Appl. Math..
[4] Omer Reingold,et al. Undirected ST-connectivity in log-space , 2005, STOC '05.
[5] Eitan M. Gurari,et al. Introduction to the theory of computation , 1989 .
[6] Víctor Dalmau,et al. Maltsev + Datalog --≫ Symmetric Datalog , 2008, 2008 23rd Annual IEEE Symposium on Logic in Computer Science.
[7] Tomás Feder,et al. Monotone monadic SNP and constraint satisfaction , 1993, STOC.
[8] Libor Barto,et al. Constraint Satisfaction Problems of Bounded Width , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[9] Andrei A. Bulatov,et al. Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..
[10] Pascal Tesson,et al. The Complexity of the List Homomorphism Problem for Graphs , 2010, STACS.
[11] B. Larose,et al. Bounded width problems and algebras , 2007 .
[12] Nicole Fassbinder. Structure Of Finite Algebras Contemporary Mathematics , 2016 .
[13] Claude Tardif,et al. A Characterisation of First-Order Constraint Satisfaction Problems , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).
[14] Todd Niven,et al. On the Reduction of the CSP Dichotomy Conjecture to Digraphs , 2013, CP.
[15] Pascal Tesson,et al. Symmetric Datalog and Constraint Satisfaction Problems in Logspace , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).
[16] Pascal Tesson,et al. Universal algebra and hardness results for constraint satisfaction problems , 2007, Theor. Comput. Sci..
[17] Marc Gyssens,et al. Closure properties of constraints , 1997, JACM.
[18] Andrei A. Bulatov,et al. Recent Results on the Algebraic Approach to the CSP , 2008, Complexity of Constraints.
[19] P. Hell,et al. Sparse pseudo-random graphs are Hamiltonian , 2003 .
[20] Pavol Hell,et al. The dichotomy of list homomorphisms for digraphs , 2011, SODA '11.
[21] A. Lemaître. Complexité des homomorphismes de graphes avec listes , 2012 .
[22] Andrei A. Bulatov,et al. A Simple Algorithm for Mal'tsev Constraints , 2006, SIAM J. Comput..
[23] Pascal Tesson,et al. The Complexity of the List Homomorphism Problem for Graphs , 2011, Theory of Computing Systems.
[24] Alexandr Kazda,et al. CSP for binary conservative relational structures , 2011, 1112.1099.
[25] Andrei A. Bulatov,et al. Complexity of conservative constraint satisfaction problems , 2011, TOCL.