Structure-based design, synthesis, and in vitro evaluation of bisubstrate inhibitors for catechol O-methyltransferase (COMT).

The enzyme catechol O-methyltransferase (COMT) catalyzes the Me group transfer from the cofactor S-adenosylmethionine (SAM) to the hydroxy group of catechol substrates. Potential bisubstrate inhibitors of COMT were developed by structure-based design and synthesized. The compounds were tested for in vitro inhibitory activity against COMT obtained from rat liver, and the inhibition kinetics were examined with regard to the binding sites of cofactor and substrate. One of the designed molecules was found to be a bisubstrate inhibitor of COMT with an IC50 = 2 microM. It exhibits competitive kinetics for the SAM and noncompetitive kinetics for the catechol binding site. Useful structure-activity relationships were established which provide important guidelines for the design of future generations of bisubstrate inhibitors of COMT.