A Type II Supernova Hubble Diagram from the CSP-I, SDSS-II, and SNLS Surveys
暂无分享,去创建一个
M. Sullivan | V. Ruhlmann-Kleider | H. Kuncarayakti | M. Hamuy | M. M. Phillips | S. Basa | R. G. Carlberg | D. Andrew Howell | L. Galbany | I. Hook | M. Sullivan | S. González-Gaitán | M. Stritzinger | D. Howell | L. Galbany | E. Hsiao | J. Anderson | H. Kuncarayakti | M. Hamuy | V. Ruhlmann-Kleider | R. Carlberg | C. Pritchet | S. Basa | M. Stritzinger | T. D. Jaeger | S. Gonz'alez-Gait'an | C. Guti'errez | G. Folatelli | G. Folatelli | E. Y. Hsiao | I. M. Hook | M. D. Stritzinger | C. Pritchet | J. P. Anderson | T. de Jaeger | S. Gonz'alez-Gait'an | C. P. Guti'errez | M. Phillips | S. González-Gaitán | C. Gutiérrez | R. Carlberg | Joseph P. Anderson | Mark Sullivan | E. Hsiao | M. Phillips | D. A. Howell | Isobel Hook | Chris Pritchet
[1] William Press,et al. A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.
[2] Brian Paul Schmidt,et al. The atmospheres of type II supernovae and the expanding photosphere method , 1996 .
[3] D. Poznanski,et al. TYPE II-P SUPERNOVAE AS STANDARD CANDLES: THE SDSS-II SAMPLE REVISITED , 2010, 1008.0877.
[4] D. Andrew. Peer Reviewed Title: Towards a Cosmological Hubble Diagram for Type II-P Supernovae , 2006 .
[5] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[6] L. D. J. Hillier. Distance determinations using Type II supernovae and the expanding photosphere method , 2005, astro-ph/0505465.
[7] M. Sullivan,et al. Supernova Legacy Survey: using spectral signatures to improve Type Ia supernovae as distance indicators , 2010, 1008.2308.
[8] R. Minkowski,et al. Spectra of Supernovae , 1941 .
[9] D. J. Fixsen,et al. The Cosmic Microwave Background spectrum from the full COBE FIRAS data set , 1996 .
[10] S. Gezari,et al. TOWARD CHARACTERIZATION OF THE TYPE IIP SUPERNOVA PROGENITOR POPULATION: A STATISTICAL SAMPLE OF LIGHT CURVES FROM Pan-STARRS1 , 2014, 1404.2004.
[11] Eugene A. Magnier,et al. The Elixir System: Data Characterization and Calibration at the Canada‐France‐Hawaii Telescope , 2004 .
[12] B. Kelly. Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.
[13] J. Prieto,et al. A GLOBAL MODEL OF THE LIGHT CURVES AND EXPANSION VELOCITIES OF TYPE II-PLATEAU SUPERNOVAE , 2014, 1409.2500.
[14] J. Vinkó,et al. Measuring expansion velocities in Type II-P supernovae , 2011, 1109.5873.
[15] S. Deustua,et al. PRECISION MEASUREMENT OF THE MOST DISTANT SPECTROSCOPICALLY CONFIRMED SUPERNOVA Ia WITH THE HUBBLE SPACE TELESCOPE , 2012, 1205.3494.
[16] N. S. Philip,et al. Results from the Supernova Photometric Classification Challenge , 2010, 1008.1024.
[17] Copenhagen,et al. The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .
[18] J. Neill,et al. Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.
[19] J. Sollerman,et al. Metallicity from Type II supernovae from the (i)PTF , 2016, 1602.01433.
[20] Alexander S. Szalay,et al. Sloan digital sky survey: Early data release , 2002 .
[21] E. Livne,et al. Type II-Plateau supernova radiation: dependences on progenitor and explosion properties , 2013, 1305.3386.
[22] H. Kuncarayakti,et al. A HUBBLE DIAGRAM FROM TYPE II SUPERNOVAE BASED SOLELY ON PHOTOMETRY: THE PHOTOMETRIC COLOR METHOD , 2015, 1511.05145.
[23] Napp,et al. SDSS data management and photometric quality assessment , 2008 .
[24] M. Sullivan,et al. SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY , 2011, 1104.1443.
[25] R. Foley,et al. Photometric and spectroscopic properties of Type II-P supernovae , 2014, 1404.0378.
[26] P. E. Nugent,et al. K-corrections and spectral templates of Type Ia supernovae , 2007 .
[27] Berkeley,et al. SNLS Spectroscopy: Testing for Evolution in Type Ia Supernovae , 2007, 0709.0859.
[28] M. Phillips,et al. The Absolute Luminosities of the Calan/Tololo Type Ia Supernovae , 1996, astro-ph/9609059.
[29] M. Hamuy,et al. PHOTOSPHERIC MAGNITUDE DIAGRAMS FOR TYPE II SUPERNOVAE: A PROMISING TOOL TO COMPUTE DISTANCES , 2014, 1409.3198.
[30] Douglas P. Finkbeiner,et al. MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.
[31] R. Ellis,et al. Measurements of the cosmological parameters omega and lambda from the first seven supernovae at z greater than or equal to 0.35 , 1996, astro-ph/9608192.
[32] Kevin Krisciunas,et al. CHARACTERIZING THE V-BAND LIGHT-CURVES OF HYDROGEN-RICH TYPE II SUPERNOVAE , 2014, 1403.7091.
[33] M. Hamuy,et al. K-CORRECTIONS FOR TYPE IA SUPERNOVAE , 1993 .
[34] J. Mathis,et al. The relationship between infrared, optical, and ultraviolet extinction , 1989 .
[35] M. Sullivan,et al. The Core-collapse rate from the Supernova Legacy Survey , 2009, 0904.1066.
[36] P. Astier,et al. PHotometry Assisted Spectral Extraction (PHASE) and identification of SNLS supernovae , 2008, 0809.4407.
[37] P. Nugent,et al. K‐Corrections and Extinction Corrections for Type Ia Supernovae , 2002, astro-ph/0205351.
[38] A. Kim,et al. A GENERALIZED K CORRECTION FOR TYPE IA SUPERNOVAE: COMPARING R-BAND PHOTOMETRY BEYOND Z=0.2 WITH B, V, AND R-BAND NEARBY PHOTOMETRY , 1996 .
[39] Robert P. Kirshner,et al. THE STANDARDIZED CANDLE METHOD FOR TYPE II PLATEAU SUPERNOVAE , 2010, 1004.2534.
[40] Alexei V. Filippenko,et al. Optical spectra of supernovae , 1997 .
[41] M. Phillips,et al. The Absolute Magnitudes of Type IA Supernovae , 1993 .
[42] D. Fox,et al. CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE II SUPERNOVAE: EVIDENCE FOR THREE DISTINCT PHOTOMETRIC SUBTYPES , 2012, 1206.2029.
[43] M. Sullivan,et al. SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES , 2011, 1104.1444.
[44] Wendy L. Freedman,et al. THE CARNEGIE SUPERNOVA PROJECT: SECOND PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE , 2010, 1108.3108.
[45] Stephan Aune,et al. MegaCam: the new Canada-France-Hawaii Telescope wide-field imaging camera , 2003, SPIE Astronomical Telescopes + Instrumentation.
[46] M. Turatto,et al. Variety in Supernovae , 2002 .
[47] R. Nichol,et al. Cosmology with superluminous supernovae , 2015, 1511.06670.
[48] R. Ellis,et al. Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.
[49] Wendy L. Freedman,et al. The Carnegie Supernova Project: The Low‐Redshift Survey , 2005, astro-ph/0512039.
[50] J. Kaplan,et al. THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY , 2007, 0708.2749.
[51] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[52] et al,et al. The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.
[53] Adam A. Miller,et al. IMPROVED STANDARDIZATION OF TYPE II-P SUPERNOVAE: APPLICATION TO AN EXPANDED SAMPLE , 2008, 0810.4923.
[54] J. Wright,et al. ABSOLUTE-MAGNITUDE DISTRIBUTIONS OF SUPERNOVAE , 2014, 1403.5755.
[55] Robert P. Kirshner,et al. Using Quantitative Spectroscopic Analysis to Determine the Properties and Distances of Type II Plateau Supernovae: SN 2005cs and SN 2006bp , 2007, 0711.1815.
[56] S. E. Persson,et al. Type II Plateau supernovae as metallicity probes of the Universe , 2014, 1403.1167.
[57] Bruno Leibundgut,et al. From twilight to highlight : the physics of supernovae : proceedings of the ESO/MPA/MPE workshop held at Garching, Germany, 29-31 July 2002 , 2002 .
[58] Adam G. Riess,et al. TYPE II-P SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY AND THE STANDARDIZED CANDLE METHOD , 2009, 0910.5597.
[59] A. Pastorello,et al. COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY , 2013, 1310.3828.
[60] Robert P. Kirshner,et al. Distances to extragalactic supernovae , 1974 .
[61] Mamoru Doi,et al. THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.
[62] J. Prieto,et al. Type II supernovae as probes of environment metallicity: observations of host H II regions , 2016, 1602.00011.
[63] R. Ellis,et al. Toward a Cosmological Hubble Diagram for Type II-P Supernovae , 2005, astro-ph/0603535.
[64] S. E. Woosley,et al. TYPE II SUPERNOVAE: MODEL LIGHT CURVES AND STANDARD CANDLE RELATIONSHIPS , 2009, 0910.1590.
[65] J. B. Oke,et al. ENERGY DISTRIBUTIONS, K CORRECTIONS, AND THE STEBBINS--WHITFORD EFFECT FOR GIANT ELLIPTICAL GALAXIES. , 1968 .
[66] M. Stephens. EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .
[67] M. Phillips,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[68] R. Ellis,et al. Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra , 2007, 0710.3896.
[69] G. Pignata,et al. The rise-time of Type II supernovae , 2015, 1505.02988.
[70] Walter A. Siegmund,et al. The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.
[71] P. Phillips,et al. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? , 1992 .
[72] M. Sullivan,et al. Photometric calibration of the Supernova Legacy Survey fields , 2006, astro-ph/0610397.
[73] G. Williger,et al. UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE , 2015, 1511.08402.
[74] M. Fukugita,et al. The Sloan Digital Sky Survey Photometric System , 1996 .
[75] S. E. Persson,et al. SPECTROSCOPY OF TYPE Ia SUPERNOVAE BY THE CARNEGIE SUPERNOVA PROJECT , 2013, 1305.6997.
[76] M. Sullivan,et al. Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.
[77] D. Poznanski,et al. Low‐resolution sodium D absorption is a bad proxy for extinction , 2011, 1106.1469.
[78] Davis,et al. The diversity of Type II supernova versus the similarity in their progenitors , 2016, 1603.08953.
[79] D. Howell,et al. Type Ia supernovae as stellar endpoints and cosmological tools. , 2010, Nature communications.
[80] M. Phillips,et al. The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae , 1998, astro-ph/9805200.
[81] A. Moorwood,et al. Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .
[82] Nicholas B. Suntzeff,et al. THE CARNEGIE SUPERNOVA PROJECT: FIRST PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE , 2009, 0910.3330.
[83] A. Pastorello,et al. SYSTEMATIC UNCERTAINTIES ASSOCIATED WITH THE COSMOLOGICAL ANALYSIS OF THE FIRST PAN-STARRS1 TYPE Ia SUPERNOVA SAMPLE , 2013, 1310.3824.
[84] M. Sullivan,et al. The ESO/VLT 3rd year Type Ia supernova data set from the supernova legacy survey , 2009, 0909.3316.
[85] M. Sullivan,et al. The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.
[86] Philip A. Pinto,et al. Type II Supernovae as Standardized Candles , 2002 .
[87] R. Foley,et al. A sample of Type II-L supernovae , 2014, 1409.1536.
[88] I. Hook,et al. REAL-TIME ANALYSIS AND SELECTION BIASES IN THE SUPERNOVA LEGACY SURVEY , 2010, 1006.2254.