A Type II Supernova Hubble Diagram from the CSP-I, SDSS-II, and SNLS Surveys

The coming era of large photometric wide-field surveys will increase the detection rate of supernovae by orders of magnitude. Such numbers will restrict spectroscopic follow-up in the vast majority of cases, and hence new methods based solely on photometric data must be developed. Here, we construct a complete Hubble diagram of Type II supernovae (SNe II) combining data from three different samples: the Carnegie Supernova Project-I, the Sloan Digital Sky Survey II SN, and the Supernova Legacy Survey. Applying the Photometric Color Method (PCM) to 73 SNe II with a redshift range of 0.01–0.5 and with no spectral information, we derive an intrinsic dispersion of 0.35 mag. A comparison with the Standard Candle Method (SCM) using 61 SNe II is also performed and an intrinsic dispersion in the Hubble diagram of 0.27 mag, i.e., 13% in distance uncertainties, is derived. Due to the lack of good statistics at higher redshifts for both methods, only weak constraints on the cosmological parameters are obtained. However, assuming a flat universe and using the PCM, we derive the universe's matter density: ${{\rm{\Omega }}}_{m}={0.32}_{-0.21}^{+0.30}$ providing a new independent evidence for dark energy at the level of two sigma.

[1]  William Press,et al.  A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.

[2]  Brian Paul Schmidt,et al.  The atmospheres of type II supernovae and the expanding photosphere method , 1996 .

[3]  D. Poznanski,et al.  TYPE II-P SUPERNOVAE AS STANDARD CANDLES: THE SDSS-II SAMPLE REVISITED , 2010, 1008.0877.

[4]  D. Andrew Peer Reviewed Title: Towards a Cosmological Hubble Diagram for Type II-P Supernovae , 2006 .

[5]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[6]  L. D. J. Hillier Distance determinations using Type II supernovae and the expanding photosphere method , 2005, astro-ph/0505465.

[7]  M. Sullivan,et al.  Supernova Legacy Survey: using spectral signatures to improve Type Ia supernovae as distance indicators , 2010, 1008.2308.

[8]  R. Minkowski,et al.  Spectra of Supernovae , 1941 .

[9]  D. J. Fixsen,et al.  The Cosmic Microwave Background spectrum from the full COBE FIRAS data set , 1996 .

[10]  S. Gezari,et al.  TOWARD CHARACTERIZATION OF THE TYPE IIP SUPERNOVA PROGENITOR POPULATION: A STATISTICAL SAMPLE OF LIGHT CURVES FROM Pan-STARRS1 , 2014, 1404.2004.

[11]  Eugene A. Magnier,et al.  The Elixir System: Data Characterization and Calibration at the Canada‐France‐Hawaii Telescope , 2004 .

[12]  B. Kelly Some Aspects of Measurement Error in Linear Regression of Astronomical Data , 2007, 0705.2774.

[13]  J. Prieto,et al.  A GLOBAL MODEL OF THE LIGHT CURVES AND EXPANSION VELOCITIES OF TYPE II-PLATEAU SUPERNOVAE , 2014, 1409.2500.

[14]  J. Vinkó,et al.  Measuring expansion velocities in Type II-P supernovae , 2011, 1109.5873.

[15]  S. Deustua,et al.  PRECISION MEASUREMENT OF THE MOST DISTANT SPECTROSCOPICALLY CONFIRMED SUPERNOVA Ia WITH THE HUBBLE SPACE TELESCOPE , 2012, 1205.3494.

[16]  N. S. Philip,et al.  Results from the Supernova Photometric Classification Challenge , 2010, 1008.1024.

[17]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .

[18]  J. Neill,et al.  Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.

[19]  J. Sollerman,et al.  Metallicity from Type II supernovae from the (i)PTF , 2016, 1602.01433.

[20]  Alexander S. Szalay,et al.  Sloan digital sky survey: Early data release , 2002 .

[21]  E. Livne,et al.  Type II-Plateau supernova radiation: dependences on progenitor and explosion properties , 2013, 1305.3386.

[22]  H. Kuncarayakti,et al.  A HUBBLE DIAGRAM FROM TYPE II SUPERNOVAE BASED SOLELY ON PHOTOMETRY: THE PHOTOMETRIC COLOR METHOD , 2015, 1511.05145.

[23]  Napp,et al.  SDSS data management and photometric quality assessment , 2008 .

[24]  M. Sullivan,et al.  SUPERNOVA CONSTRAINTS AND SYSTEMATIC UNCERTAINTIES FROM THE FIRST THREE YEARS OF THE SUPERNOVA LEGACY SURVEY , 2011, 1104.1443.

[25]  R. Foley,et al.  Photometric and spectroscopic properties of Type II-P supernovae , 2014, 1404.0378.

[26]  P. E. Nugent,et al.  K-corrections and spectral templates of Type Ia supernovae , 2007 .

[27]  Berkeley,et al.  SNLS Spectroscopy: Testing for Evolution in Type Ia Supernovae , 2007, 0709.0859.

[28]  M. Phillips,et al.  The Absolute Luminosities of the Calan/Tololo Type Ia Supernovae , 1996, astro-ph/9609059.

[29]  M. Hamuy,et al.  PHOTOSPHERIC MAGNITUDE DIAGRAMS FOR TYPE II SUPERNOVAE: A PROMISING TOOL TO COMPUTE DISTANCES , 2014, 1409.3198.

[30]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[31]  R. Ellis,et al.  Measurements of the cosmological parameters omega and lambda from the first seven supernovae at z greater than or equal to 0.35 , 1996, astro-ph/9608192.

[32]  Kevin Krisciunas,et al.  CHARACTERIZING THE V-BAND LIGHT-CURVES OF HYDROGEN-RICH TYPE II SUPERNOVAE , 2014, 1403.7091.

[33]  M. Hamuy,et al.  K-CORRECTIONS FOR TYPE IA SUPERNOVAE , 1993 .

[34]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[35]  M. Sullivan,et al.  The Core-collapse rate from the Supernova Legacy Survey , 2009, 0904.1066.

[36]  P. Astier,et al.  PHotometry Assisted Spectral Extraction (PHASE) and identification of SNLS supernovae , 2008, 0809.4407.

[37]  P. Nugent,et al.  K‐Corrections and Extinction Corrections for Type Ia Supernovae , 2002, astro-ph/0205351.

[38]  A. Kim,et al.  A GENERALIZED K CORRECTION FOR TYPE IA SUPERNOVAE: COMPARING R-BAND PHOTOMETRY BEYOND Z=0.2 WITH B, V, AND R-BAND NEARBY PHOTOMETRY , 1996 .

[39]  Robert P. Kirshner,et al.  THE STANDARDIZED CANDLE METHOD FOR TYPE II PLATEAU SUPERNOVAE , 2010, 1004.2534.

[40]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[41]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[42]  D. Fox,et al.  CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE II SUPERNOVAE: EVIDENCE FOR THREE DISTINCT PHOTOMETRIC SUBTYPES , 2012, 1206.2029.

[43]  M. Sullivan,et al.  SNLS3: CONSTRAINTS ON DARK ENERGY COMBINING THE SUPERNOVA LEGACY SURVEY THREE-YEAR DATA WITH OTHER PROBES , 2011, 1104.1444.

[44]  Wendy L. Freedman,et al.  THE CARNEGIE SUPERNOVA PROJECT: SECOND PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE , 2010, 1108.3108.

[45]  Stephan Aune,et al.  MegaCam: the new Canada-France-Hawaii Telescope wide-field imaging camera , 2003, SPIE Astronomical Telescopes + Instrumentation.

[46]  M. Turatto,et al.  Variety in Supernovae , 2002 .

[47]  R. Nichol,et al.  Cosmology with superluminous supernovae , 2015, 1511.06670.

[48]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[49]  Wendy L. Freedman,et al.  The Carnegie Supernova Project: The Low‐Redshift Survey , 2005, astro-ph/0512039.

[50]  J. Kaplan,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY , 2007, 0708.2749.

[51]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[52]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[53]  Adam A. Miller,et al.  IMPROVED STANDARDIZATION OF TYPE II-P SUPERNOVAE: APPLICATION TO AN EXPANDED SAMPLE , 2008, 0810.4923.

[54]  J. Wright,et al.  ABSOLUTE-MAGNITUDE DISTRIBUTIONS OF SUPERNOVAE , 2014, 1403.5755.

[55]  Robert P. Kirshner,et al.  Using Quantitative Spectroscopic Analysis to Determine the Properties and Distances of Type II Plateau Supernovae: SN 2005cs and SN 2006bp , 2007, 0711.1815.

[56]  S. E. Persson,et al.  Type II Plateau supernovae as metallicity probes of the Universe , 2014, 1403.1167.

[57]  Bruno Leibundgut,et al.  From twilight to highlight : the physics of supernovae : proceedings of the ESO/MPA/MPE workshop held at Garching, Germany, 29-31 July 2002 , 2002 .

[58]  Adam G. Riess,et al.  TYPE II-P SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY AND THE STANDARDIZED CANDLE METHOD , 2009, 0910.5597.

[59]  A. Pastorello,et al.  COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY , 2013, 1310.3828.

[60]  Robert P. Kirshner,et al.  Distances to extragalactic supernovae , 1974 .

[61]  Mamoru Doi,et al.  THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.

[62]  J. Prieto,et al.  Type II supernovae as probes of environment metallicity: observations of host H II regions , 2016, 1602.00011.

[63]  R. Ellis,et al.  Toward a Cosmological Hubble Diagram for Type II-P Supernovae , 2005, astro-ph/0603535.

[64]  S. E. Woosley,et al.  TYPE II SUPERNOVAE: MODEL LIGHT CURVES AND STANDARD CANDLE RELATIONSHIPS , 2009, 0910.1590.

[65]  J. B. Oke,et al.  ENERGY DISTRIBUTIONS, K CORRECTIONS, AND THE STEBBINS--WHITFORD EFFECT FOR GIANT ELLIPTICAL GALAXIES. , 1968 .

[66]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[67]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[68]  R. Ellis,et al.  Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra , 2007, 0710.3896.

[69]  G. Pignata,et al.  The rise-time of Type II supernovae , 2015, 1505.02988.

[70]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[71]  P. Phillips,et al.  Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? , 1992 .

[72]  M. Sullivan,et al.  Photometric calibration of the Supernova Legacy Survey fields , 2006, astro-ph/0610397.

[73]  G. Williger,et al.  UBVRIz LIGHT CURVES OF 51 TYPE II SUPERNOVAE , 2015, 1511.08402.

[74]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[75]  S. E. Persson,et al.  SPECTROSCOPY OF TYPE Ia SUPERNOVAE BY THE CARNEGIE SUPERNOVA PROJECT , 2013, 1305.6997.

[76]  M. Sullivan,et al.  Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples , 2014, 1401.4064.

[77]  D. Poznanski,et al.  Low‐resolution sodium D absorption is a bad proxy for extinction , 2011, 1106.1469.

[78]  Davis,et al.  The diversity of Type II supernova versus the similarity in their progenitors , 2016, 1603.08953.

[79]  D. Howell,et al.  Type Ia supernovae as stellar endpoints and cosmological tools. , 2010, Nature communications.

[80]  M. Phillips,et al.  The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae , 1998, astro-ph/9805200.

[81]  A. Moorwood,et al.  Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, , 2003 .

[82]  Nicholas B. Suntzeff,et al.  THE CARNEGIE SUPERNOVA PROJECT: FIRST PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE , 2009, 0910.3330.

[83]  A. Pastorello,et al.  SYSTEMATIC UNCERTAINTIES ASSOCIATED WITH THE COSMOLOGICAL ANALYSIS OF THE FIRST PAN-STARRS1 TYPE Ia SUPERNOVA SAMPLE , 2013, 1310.3824.

[84]  M. Sullivan,et al.  The ESO/VLT 3rd year Type Ia supernova data set from the supernova legacy survey , 2009, 0909.3316.

[85]  M. Sullivan,et al.  The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints , , 2010, 1010.4743.

[86]  Philip A. Pinto,et al.  Type II Supernovae as Standardized Candles , 2002 .

[87]  R. Foley,et al.  A sample of Type II-L supernovae , 2014, 1409.1536.

[88]  I. Hook,et al.  REAL-TIME ANALYSIS AND SELECTION BIASES IN THE SUPERNOVA LEGACY SURVEY , 2010, 1006.2254.