RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho?

[1]  J. Gutkind,et al.  Leukemia‐associated Rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G12 family to Rho , 2000, FEBS letters.

[2]  H. Hellmich,et al.  Human Colorectal Cancers Express a Constitutively Active Cholecystokinin-B/Gastrin Receptor That Stimulates Cell Growth* , 2000, The Journal of Biological Chemistry.

[3]  T. Kozasa,et al.  G13α-mediated PYK2 Activation , 2000, The Journal of Biological Chemistry.

[4]  C. Der,et al.  G2A is an oncogenic G protein-coupled receptor , 2000, Oncogene.

[5]  P. Wedegaertner,et al.  Gα13 Requires Palmitoylation for Plasma Membrane Localization, Rho-dependent Signaling, and Promotion of p115-RhoGEF Membrane Binding* , 2000, The Journal of Biological Chemistry.

[6]  H. Fritsche,et al.  Calcium-induced activation of a mutant G-protein-coupled receptor causes in vitro transformation of NIH/3T3 cells. , 1999, Neoplasia.

[7]  D R Flower,et al.  Modelling G-protein-coupled receptors for drug design. , 1999, Biochimica et biophysica acta.

[8]  S. Offermanns New insights into the in vivo function of heterotrimeric G-proteins through gene deletion studies , 1999, Naunyn-Schmiedeberg's Archives of Pharmacology.

[9]  G. Schultz,et al.  Differential Involvement of Gα12 and Gα13 in Receptor-mediated Stress Fiber Formation* , 1999, The Journal of Biological Chemistry.

[10]  A. Hall,et al.  Activation of RhoA by lysophosphatidic acid and Galpha12/13 subunits in neuronal cells: induction of neurite retraction. , 1999, Molecular biology of the cell.

[11]  J. Gutkind,et al.  A Novel PDZ Domain Containing Guanine Nucleotide Exchange Factor Links Heterotrimeric G Proteins to Rho* , 1999, The Journal of Biological Chemistry.

[12]  Y. Yamaguchi,et al.  Constitutively Active Gα12, Gα13, and Gαq Induce Rho-dependent Neurite Retraction through Different Signaling Pathways* , 1998, The Journal of Biological Chemistry.

[13]  Yun Jiang,et al.  The G protein Gα12 stimulates Bruton's tyrosine kinase and a rasGAP through a conserved PH/BM domain , 1998, Nature.

[14]  Melvin I. Simon,et al.  Specific Involvement of G Proteins in Regulation of Serum Response Factor-mediated Gene Transcription by Different Receptors* , 1998, The Journal of Biological Chemistry.

[15]  H. Mano,et al.  Tec/Bmx non‐receptor tyrosine kinases are involved in regulation of Rho and serum response factor by Gα12/13 , 1998, The EMBO journal.

[16]  J. Gutkind,et al.  Cell growth control by G protein-coupled receptors: from signal transduction to signal integration , 1998, Oncogene.

[17]  A. Gilman,et al.  p115 RhoGEF, a GTPase activating protein for Gα12 and Gα13 , 1998 .

[18]  P C Sternweis,et al.  Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. , 1998, Science.

[19]  E. Rozengurt,et al.  Gα12 and Gα13 Stimulate Rho-dependent Tyrosine Phosphorylation of Focal Adhesion Kinase, Paxillin, and p130 Crk-associated Substrate* , 1998, The Journal of Biological Chemistry.

[20]  G. Schultz,et al.  The G-protein G13 but Not G12 Mediates Signaling from Lysophosphatidic Acid Receptor via Epidermal Growth Factor Receptor to Rho* , 1998, The Journal of Biological Chemistry.

[21]  N. Perrimon,et al.  DRhoGEF2 encodes a member of the Dbl family of oncogenes and controls cell shape changes during gastrulation in Drosophila. , 1998, Genes & development.

[22]  Heidi E. Hamm,et al.  The Many Faces of G Protein Signaling* , 1998, The Journal of Biological Chemistry.

[23]  E. Cesarman,et al.  G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator , 1998, Nature.

[24]  J. Settleman,et al.  The Rho GTPase and a Putative RhoGEF Mediate a Signaling Pathway for the Cell Shape Changes in Drosophila Gastrulation , 1997, Cell.

[25]  J. Gutkind,et al.  The small GTP-binding protein Rho links G protein-coupled receptors and Galpha12 to the serum response element and to cellular transformation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[26]  L. Van Aelst,et al.  Rho GTPases and signaling networks. , 1997, Genes & development.

[27]  K. Robbins,et al.  Tyrosine Phosphorylation of the vav Proto-oncogene Product Links FcεRI to the Rac1-JNK Pathway* , 1997, The Journal of Biological Chemistry.

[28]  J. Wess G‐protein‐coupled receptors: molecular mechanisms involved in receptor activation and selectivity of G‐protein recognition , 1997, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[29]  R. Scully,et al.  A mutation in the follicle-stimulating hormone receptor occurs frequently in human ovarian sex cord tumors. , 1997, The Journal of clinical endocrinology and metabolism.

[30]  H. Bourne,et al.  How receptors talk to trimeric G proteins. , 1997, Current opinion in cell biology.

[31]  C. Der,et al.  Dbl family proteins. , 1997, Biochimica et biophysica acta.

[32]  E. Cesarman,et al.  Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation , 1997, Nature.

[33]  K. Schuebel,et al.  Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product , 1997, Nature.

[34]  H. Khorana,et al.  Structural features and light-dependent changes in the cytoplasmic interhelical E-F loop region of rhodopsin: a site-directed spin-labeling study. , 1996, Biochemistry.

[35]  S. Narumiya The small GTPase Rho: cellular functions and signal transduction. , 1996, Journal of biochemistry.

[36]  S. Aizawa,et al.  Impairment of mobility in endodermal cells by FAK deficiency. , 1996, Experimental cell research.

[37]  G. Johnson,et al.  Gα12 and Gα13 Stimulate Rho-dependent Stress Fiber Formation and Focal Adhesion Assembly (*) , 1995, The Journal of Biological Chemistry.

[38]  S. Aizawa,et al.  Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice , 1995, Nature.

[39]  L. Heasley,et al.  G protein-coupled receptor systems involved in cell growth and oncogenesis. , 1995, Endocrine reviews.

[40]  T. Sasaki,et al.  Rho as a regulator of the cytoskeleton. , 1995, Trends in biochemical sciences.

[41]  P. Sternweis,et al.  The G protein G13 mediates inhibition of voltage-dependent calcium current by bradykinin , 1994, Neuron.

[42]  T. Voyno-Yasenetskaya,et al.  Potent Transforming Activity of the G13 α Subunit Defines a Novel Family of Oncogenes , 1994 .

[43]  Mark S. Boguski,et al.  Proteins regulating Ras and its relatives , 1993, Nature.

[44]  J. Parma,et al.  Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas , 1993, Nature.

[45]  T. Minegishi,et al.  A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty , 1993, Nature.

[46]  M. Simon,et al.  The transforming activity of activated Gα12 , 1993 .

[47]  J. Gutkind,et al.  A mutant alpha subunit of G12 potentiates the eicosanoid pathway and is highly oncogenic in NIH 3T3 cells. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[48]  T. Fleming,et al.  Expression cDNA cloning of a transforming gene encoding the wild-type G alpha 12 gene product , 1993, Molecular and cellular biology.

[49]  M. Poupon,et al.  Antitumoral activity of bombesin analogues on small cell lung cancer xenografts: relationship with bombesin receptor expression. , 1992, Cancer research.

[50]  J. Smyth,et al.  Broad spectrum neuropeptide antagonists inhibit the growth of small cell lung cancer in vivo. , 1992, Cancer research.

[51]  Anne J. Ridley,et al.  The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors , 1992, Cell.

[52]  M. Barbacid,et al.  Tyrosine Phosphorylation of the vav Proto-Oncogene Product in Activated B Cells , 1992, Science.

[53]  J. Smyth,et al.  Growth of small cell lung cancer cells: stimulation by multiple neuropeptides and inhibition by broad spectrum antagonists in vitro and in vivo. , 1992, Cancer research.

[54]  B. Trask,et al.  Evolution of the mammalian G protein α subunit multigene family , 1992, Nature Genetics.

[55]  A. Ullrich,et al.  Tyrosine phosphorylation of vav proto-oncogene product containing SH2 domain and transcription factor motifs , 1992, Nature.

[56]  R. Honess,et al.  Herpesvirus saimiri encodes homologues of G protein-coupled receptors and cyclins , 1992, Nature.

[57]  M. Caron,et al.  G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances mitogenesis and tumorigenicity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[58]  S. Aaronson,et al.  Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbloncogene product , 1991, Nature.

[59]  S. Aaronson,et al.  Growth factors and cancer. , 1991, Science.

[60]  M. Simon,et al.  G alpha 12 and G alpha 13 subunits define a fourth class of G protein alpha subunits. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[61]  M. Brann,et al.  Muscarinic acetylcholine receptor subtypes as agonist-dependent oncogenes. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Eric Wieschaus,et al.  The drosophila gastrulation gene concertina encodes a Gα-like protein , 1991, Cell.

[63]  Frank McCormick,et al.  The GTPase superfamily: conserved structure and molecular mechanism , 1991, Nature.

[64]  T. Jessell,et al.  Ectopic expression of the serotonin 1c receptor and the triggering of malignant transformation. , 1989, Science.

[65]  M. Caron,et al.  A family of receptors coupled to guanine nucleotide regulatory proteins. , 1987, Biochemistry.

[66]  A. Ullrich,et al.  Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors , 1986, Nature.

[67]  M. Wigler,et al.  Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains , 1986, Cell.

[68]  R. Weinberg,et al.  The action of oncogenes in the cytoplasm and nucleus. , 1985, Science.

[69]  J. Gutkind,et al.  Gα12- and Gα13-Subunits of Heterotrimeric G-Proteins A Novel Family of Oncogenes , 1998 .

[70]  A. Spiegel G Proteins, Receptors, and Disease , 1998, Contemporary Endocrinology.

[71]  D. Clapham,et al.  G PROTEIN BETA GAMMA SUBUNITS , 1997 .