Modifications of the quasi‐biennial oscillation by a geoengineering perturbation of the stratospheric aerosol layer

This paper examines the impact of geoengineering via stratospheric sulfate aerosol on the quasi-biennial oscillation (QBO) using the NASA Goddard Earth Observing System version 5 Chemistry Climate Model. We performed four 30 year simulations with a continuous injection of sulfur dioxide on the equator at 0° longitude. The four simulations differ by the amount of sulfur dioxide injected (5 Tg/yr and 2.5 Tg/yr) and the altitude of the injection (16 km–25 km and 22 km–25 km). We find that such an injection dramatically alters the quasi-biennial oscillation, prolonging the phase of easterly shear with respect to the control simulation. This is caused by the increased aerosol heating and associated warming in the tropical lower stratosphere and higher residual vertical velocity. In the case of maximum perturbation, i.e., highest stratospheric aerosol burden, the lower tropical stratosphere is locked into a permanent westerly QBO phase.

[1]  V. Aquila,et al.  Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP) , 2014 .

[2]  Andrew Gettelman,et al.  Impact of geoengineered aerosols on the troposphere and stratosphere , 2009 .

[3]  Barbara Scherllin-Pirscher,et al.  A new dynamic approach for statistical optimization of GNSS radio occultation bending angles for optimal climate monitoring utility , 2013 .

[4]  Anthony J. Baran,et al.  New application of the operational sounder HIRS in determining a climatology of sulphuric acid aerosol from the Pinatubo eruption , 1994 .

[5]  G. Brasseur,et al.  The response of stratospheric ozone to volcanic eruptions : sensitivity to atmospheric chlorine loading , 1995 .

[6]  Andrew S. Jones,et al.  Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall , 2013 .

[7]  J. Neelin,et al.  The Convective Cold Top and Quasi Equilibrium , 2006 .

[8]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[9]  W. Randel,et al.  Isolation of the Ozone QBO in SAGE II Data by Singular-Value Decomposition , 1996 .

[10]  Jin Young Kim,et al.  Relationship between the stratospheric quasi-biennial oscillation and the spring rainfall in the western North Pacific , 2013 .

[11]  J. Ziemke,et al.  Seasonal and Interannual Variabilities in Tropical Tropospheric Ozone , 2013 .

[12]  J. Holton,et al.  The Influence of the Equatorial Quasi-Biennial Oscillation on the Global Circulation at 50 mb , 1980 .

[13]  D. Weisenstein,et al.  The impact of geoengineering aerosols on stratospheric temperature and ozone , 2009 .

[14]  D. Hartmann,et al.  The Influence of the Quasi-Biennial Oscillation on the Troposphere in Winter in a Hierarchy of Models. Part II: Perpetual Winter WACCM Runs , 2011 .

[15]  Tom M. L. Wigley,et al.  Multi-Gas Forcing Stabilization with Minicam , 2006 .

[16]  Andrea Molod,et al.  The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna , 2012 .

[17]  S. Watanabe,et al.  Sensitivity of the QBO to Mean Tropical Upwelling under a Changing Climate Simulated with an Earth System Model , 2012 .

[18]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[19]  Steven Pawson,et al.  Goddard Earth Observing System chemistry‐climate model simulations of stratospheric ozone‐temperature coupling between 1950 and 2005 , 2008 .

[20]  Y. Kawatani,et al.  Weakened stratospheric quasibiennial oscillation driven by increased tropical mean upwelling , 2013, Nature.

[21]  L. Oman,et al.  The ozone response to ENSO in Aura satellite measurements and a chemistry‐climate simulation , 2013 .

[22]  P. Newman,et al.  Stratospheric thermal damping times , 1997 .

[23]  K. Taylor,et al.  The Geoengineering Model Intercomparison Project (GeoMIP) , 2011 .

[24]  J. Edmonds,et al.  Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations , 2007 .

[25]  P. Rasch,et al.  Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP) , 2013 .

[26]  K. Labitzke Stratospheric temperature changes after the Pinatubo eruption , 1994 .

[27]  J. Edmonds,et al.  Implications of Limiting CO2 Concentrations for Land Use and Energy , 2009, Science.

[28]  J. Hansen,et al.  Efficacy of climate forcings , 2005 .

[29]  L. Oman,et al.  Temperature trends in the tropical upper troposphere and lower stratosphere: Connections with sea surface temperatures and implications for water vapor and ozone , 2013 .

[30]  M. Chin,et al.  Online simulations of global aerosol distributions in the NASA GEOS‐4 model and comparisons to satellite and ground‐based aerosol optical depth , 2010 .

[31]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[32]  Shingo Watanabe,et al.  The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP) , 2013 .

[33]  J. London,et al.  The quasi‐biennial oscillation in atmospheric ozone , 1982 .

[34]  Charles R. Trepte,et al.  Tropical stratospheric circulation deduced from satellite aerosol data , 1992, Nature.

[35]  Luke D. Oman,et al.  Dispersion of the volcanic sulfate cloud from a Mount Pinatubo–like eruption , 2012 .

[36]  L. Oman,et al.  The Response of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo , 2012 .