Basic Technology for Formal Verification

[1]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[2]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[3]  J. Paul Roth,et al.  Diagnosis of automata failures: a calculus and a method , 1966 .

[4]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[5]  Prabhakar Goel,et al.  An Implicit Enumeration Algorithm to Generate Tests for Combinational Logic Circuits , 1981, IEEE Transactions on Computers.

[6]  Hideo Fujiwara,et al.  On the Acceleration of Test Generation Algorithms , 1983, IEEE Transactions on Computers.

[7]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[8]  Albert R. Wang,et al.  Logic verification using binary decision diagrams in a logic synthesis environment , 1988, [1988] IEEE International Conference on Computer-Aided Design (ICCAD-89) Digest of Technical Papers.

[9]  Masahiro Fujita,et al.  Evaluation and improvement of Boolean comparison method based on binary decision diagrams , 1988, [1988] IEEE International Conference on Computer-Aided Design (ICCAD-89) Digest of Technical Papers.

[10]  Randal E. Bryant,et al.  On the Complexity of VLSI Implementations and Graph Representations of Boolean Functions with Application to Integer Multiplication , 1991, IEEE Trans. Computers.

[11]  Randal E. Bryant,et al.  Efficient implementation of a BDD package , 1991, DAC '90.

[12]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[13]  R. Rudell Dynamic variable ordering for ordered binary decision diagrams , 1993, ICCAD 1993.

[14]  Shin-ichi Minato,et al.  Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems , 1993, 30th ACM/IEEE Design Automation Conference.

[15]  Hantao Zhang,et al.  SATO: An Efficient Propositional Prover , 1997, CADE.

[16]  Tiziano Villa,et al.  Multi-valued decision diagrams: theory and applications , 1998 .

[17]  Joao Marques-Silva,et al.  GRASP: A Search Algorithm for Propositional Satisfiability , 1999, IEEE Trans. Computers.

[18]  Mary Sheeran,et al.  A Tutorial on Stålmarck's Proof Procedure for Propositional Logic , 2000, Formal Methods Syst. Des..

[19]  M. Moskewicz,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[20]  Sharad Malik,et al.  Efficient conflict driven learning in a Boolean satisfiability solver , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[21]  Eugene Goldberg,et al.  BerkMin: A Fast and Robust Sat-Solver , 2002 .

[22]  David L. Dill,et al.  CVC: A Cooperating Validity Checker , 2002, CAV.

[23]  M. K. Iyer,et al.  SATORI - A Fast Sequential SAT Engine for Circuits , 2003, ICCAD 2003.

[24]  Kenneth L. McMillan,et al.  Automatic Abstraction without Counterexamples , 2003, TACAS.

[25]  Eugene Goldberg,et al.  Verification of proofs of unsatisfiability for CNF formulas , 2003, 2003 Design, Automation and Test in Europe Conference and Exhibition.

[26]  Sharad Malik,et al.  Validating SAT solvers using an independent resolution-based checker: practical implementations and other applications , 2003, 2003 Design, Automation and Test in Europe Conference and Exhibition.

[27]  Armin Biere,et al.  A survey of recent advances in SAT-based formal verification , 2005, International Journal on Software Tools for Technology Transfer.

[28]  Sergey Berezin,et al.  CVC Lite: A New Implementation of the Cooperating Validity Checker Category B , 2004, CAV.