Extremal results in sparse pseudorandom graphs

Abstract Szemeredi's regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and Rodl proved an analogue of Szemeredi's regularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemeredi's regularity lemma use an associated counting lemma. In order to prove extensions of these results which also apply to sparse graphs, it remained a well-known open problem to prove a counting lemma in sparse graphs. The main advance of this paper lies in a new counting lemma, proved following the functional approach of Gowers, which complements the sparse regularity lemma of Kohayakawa and Rodl, allowing us to count small graphs in regular subgraphs of a sufficiently pseudorandom graph. We use this to prove sparse extensions of several well-known combinatorial theorems, including the removal lemmas for graphs and groups, the Erdős–Stone–Simonovits theorem and Ramsey's theorem. These results extend and improve upon a substantial body of previous work.

[1]  W. T. Gowers,et al.  On the KŁR conjecture in random graphs , 2013, 1305.2516.

[2]  Noga A Lon,et al.  Tur an Numbers of Bipartite Graphs and Related Ramsey-Type Questions , 2003 .

[3]  Noga Alon,et al.  Explicit Ramsey graphs and orthonormal labelings , 1994, Electron. J. Comb..

[4]  Alexandr V. Kostochka,et al.  On independent sets in hypergraphs , 2011, Random Struct. Algorithms.

[5]  R. A. R. A Z B O R O V On the minimal density of triangles in graphs , 2008 .

[6]  Vojtech Rödl,et al.  The Algorithmic Aspects of the Regularity Lemma , 1994, J. Algorithms.

[7]  D. Conlon,et al.  An Approximate Version of Sidorenko’s Conjecture , 2010, 1004.4236.

[8]  Yoshiharu Kohayakawa,et al.  Special Issue on Ramsey Theory , 2003, Combinatorics, Probability and Computing.

[9]  Noga Alon,et al.  Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.

[10]  Fan Chung Graham,et al.  Quasi-random graphs , 1988, Comb..

[11]  P. Erdos,et al.  SOME RECENT RESULTS ON EXTREMAL PROBLEMS IN GRAPH THEORY (Results) , 2002 .

[12]  V. Rödl,et al.  Threshold functions for Ramsey properties , 1995 .

[13]  Alexander Sidorenko,et al.  A correlation inequality for bipartite graphs , 1993, Graphs Comb..

[14]  W. T. Gowers,et al.  Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .

[15]  David Conlon,et al.  Bounds for graph regularity and removal lemmas , 2011, ArXiv.

[16]  Nathan Linial,et al.  Lifts, Discrepancy and Nearly Optimal Spectral Gap* , 2006, Comb..

[17]  V. Rödl,et al.  On The Triangle Removal Lemma For Subgraphs of Sparse Pseudorandom Graphs , 2010 .

[18]  V. Rödl,et al.  Regularity Lemmas for Graphs , 2010 .

[19]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[20]  W. T. Gowers,et al.  Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.

[21]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[22]  Yoshiharu Kohayakawa,et al.  Small subsets inherit sparse epsilon-regularity , 2007, J. Comb. Theory, Ser. B.

[23]  Stefanie Gerke,et al.  A probabilistic counting lemma for complete graphs , 2007, Random Struct. Algorithms.

[24]  Yoshiharu Kohayakawa,et al.  Small subsets inherit sparse ε-regularity , 2004 .

[25]  Paul Erdös,et al.  Cutting a graph into two dissimilar halves , 1988, J. Graph Theory.

[26]  Stefanie Gerke,et al.  The sparse regularity lemma and its applications , 2005, BCC.

[27]  Noga Alon,et al.  Approximating the independence number via theϑ-function , 1998, Math. Program..

[28]  A. Goodman On Sets of Acquaintances and Strangers at any Party , 1959 .

[29]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.

[30]  Vojtech Rödl,et al.  The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.

[31]  D. Conlon A new upper bound for diagonal Ramsey numbers , 2006, math/0607788.

[32]  A. Thomason A Disproof of a Conjecture of Erdős in Ramsey Theory , 1989 .

[33]  R. Graham,et al.  Quasi-random set systems , 1991 .

[34]  T. Tao,et al.  The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.

[35]  P. ERDŐS-A. HAJNAL-L. PÓSA STRONG EMBEDDINGS OF GRAPHS INTO COLORED GRAPHS , 2004 .

[36]  Elad Aigner-Horev,et al.  Extremal results for odd cycles in sparse pseudorandom graphs , 2013, Electron. Notes Discret. Math..

[37]  Daniel Král,et al.  A combinatorial proof of the Removal Lemma for Groups , 2008, J. Comb. Theory, Ser. A.

[38]  Yoshiharu Kohayakawa,et al.  Sparse partition universal graphs for graphs of bounded degree , 2011 .

[39]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[40]  Vojtech Rödl,et al.  Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.

[41]  Vojtech Rödl,et al.  The Ramsey number of a graph with bounded maximum degree , 1983, J. Comb. Theory B.

[42]  Fan Chung Graham,et al.  Sparse Quasi-Random Graphs , 2002, Comb..

[43]  W. T. Gowers,et al.  Quasirandom Groups , 2007, Combinatorics, Probability and Computing.

[44]  Benny Sudakov,et al.  Two remarks on the Burr-Erdos conjecture , 2009, Eur. J. Comb..

[45]  V. Sós,et al.  Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.

[46]  Alex D. Scott,et al.  Szemerédi's Regularity Lemma for Matrices and Sparse Graphs , 2010, Combinatorics, Probability and Computing.

[47]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[48]  Steve Butler,et al.  Induced-Universal Graphs for Graphs with Bounded Maximum Degree , 2009, Graphs Comb..

[49]  P. Erdös On the structure of linear graphs , 1946 .

[50]  Paul Erdös,et al.  Imbalances in k-colorations , 1971, Networks.

[51]  Jacob Fox,et al.  A new proof of the graph removal lemma , 2010, ArXiv.

[52]  J. Sheehan,et al.  On the number of complete subgraphs contained in certain graphs , 1981, J. Comb. Theory, Ser. B.

[53]  Yoshiharu Kohayakawa,et al.  Turán's theorem for pseudo-random graphs , 2007, J. Comb. Theory, Ser. A.

[54]  Yoshiharu Kohayakawa,et al.  Regular pairs in sparse random graphs I , 2003, Random Struct. Algorithms.

[55]  V. Rödl,et al.  The counting lemma for regular k-uniform hypergraphs , 2006 .

[56]  N. Alon,et al.  testing of large graphs , 2000 .

[57]  Vojtech Rödl,et al.  On Induced Ramsey Numbers for Graphs with Bounded Maximum Degree , 1996, J. Comb. Theory, Ser. B.

[58]  Yoshiharu Kohayakawa,et al.  Turán's Extremal Problem in Random Graphs: Forbidding Even Cycles , 1995, J. Comb. Theory, Ser. B.

[59]  Linyuan Lu,et al.  Explicit Construction of Small Folkman Graphs , 2008, SIAM J. Discret. Math..

[60]  Noga Alon,et al.  Additive approximation for edge-deletion problems , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[61]  Vojtech Rödl,et al.  Ramsey properties of random discrete structures , 2010, Random Struct. Algorithms.

[62]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[63]  Terence Tao A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.

[64]  V. Rödl,et al.  Embedding graphs with bounded degree in sparse pseudorandom graphs , 2004 .

[65]  W. T. Gowers,et al.  Combinatorial theorems in sparse random sets , 2010, 1011.4310.

[66]  Y. Kohayakawa Szemerédi's regularity lemma for sparse graphs , 1997 .

[67]  Benny Sudakov,et al.  A generalization of Turán's theorem , 2005, J. Graph Theory.

[68]  Vojtech Rödl,et al.  On graphs with linear Ramsey numbers , 2000, J. Graph Theory.

[69]  Vojtech Rödl,et al.  Quasi-Randomness and Algorithmic Regularity for Graphs with General Degree Distributions , 2007, SIAM J. Comput..

[70]  Noga Alon,et al.  Efficient Testing of Large Graphs , 2000, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[71]  B. Szegedy,et al.  On the logarithimic calculus and Sidorenko's conjecture , 2011, 1107.1153.

[72]  Benny Sudakov,et al.  Induced Ramsey-type theorems , 2007, Electron. Notes Discret. Math..

[73]  Jacob Fox,et al.  There exist graphs with super‐exponential Ramsey multiplicity constant , 2008, J. Graph Theory.

[74]  N. Linial,et al.  Lifts, Discrepancy and Nearly Optimal Spectral Gaps , 2003 .

[75]  Andrzej Dudek,et al.  On the Folkman Number f(2, 3, 4) , 2008, Exp. Math..

[76]  M. Simonovits Extremal Graph Problems , Degenerate Extremal Problems , and Supersaturated Graphs , 2010 .

[77]  Benny Sudakov,et al.  Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz , 2013, Comb..

[78]  Stefan A. Burr,et al.  On the Ramsey multiplicities of graphs - problems and recent results , 1980, J. Graph Theory.

[79]  T. Lu ON K4-FREE SUBGRAPHS OF RANDOM GRAPHS , 1997 .

[80]  Vladimir Nikiforov,et al.  The number of cliques in graphs of given order and size , 2007, 0710.2305.

[81]  B. Green A Szemerédi-type regularity lemma in abelian groups, with applications , 2003, math/0310476.

[82]  Alan M. Frieze,et al.  An efficient sparse regularity concept , 2009, SODA.

[83]  Yoshiharu Kohayakawa,et al.  Szemerédi’s Regularity Lemma and Quasi-randomness , 2003 .

[84]  Vojtech Rödl,et al.  A Fast Approximation Algorithm for Computing the Frequencies of Subgraphs in a Given Graph , 1995, SIAM J. Comput..

[85]  Fan Chung Graham,et al.  Quasi‐random graphs with given degree sequences , 2008, Random Struct. Algorithms.

[86]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[87]  F. Chung A Spectral Turán Theorem , 2005, Combinatorics, Probability and Computing.

[88]  P. Erdös,et al.  On the structure of linear graphs , 1946 .