暂无分享,去创建一个
[1] W. T. Gowers,et al. On the KŁR conjecture in random graphs , 2013, 1305.2516.
[2] Noga A Lon,et al. Tur an Numbers of Bipartite Graphs and Related Ramsey-Type Questions , 2003 .
[3] Noga Alon,et al. Explicit Ramsey graphs and orthonormal labelings , 1994, Electron. J. Comb..
[4] Alexandr V. Kostochka,et al. On independent sets in hypergraphs , 2011, Random Struct. Algorithms.
[5] R. A. R. A Z B O R O V. On the minimal density of triangles in graphs , 2008 .
[6] Vojtech Rödl,et al. The Algorithmic Aspects of the Regularity Lemma , 1994, J. Algorithms.
[7] D. Conlon,et al. An Approximate Version of Sidorenko’s Conjecture , 2010, 1004.4236.
[8] Yoshiharu Kohayakawa,et al. Special Issue on Ramsey Theory , 2003, Combinatorics, Probability and Computing.
[9] Noga Alon,et al. Approximating the cut-norm via Grothendieck's inequality , 2004, STOC '04.
[10] Fan Chung Graham,et al. Quasi-random graphs , 1988, Comb..
[11] P. Erdos,et al. SOME RECENT RESULTS ON EXTREMAL PROBLEMS IN GRAPH THEORY (Results) , 2002 .
[12] V. Rödl,et al. Threshold functions for Ramsey properties , 1995 .
[13] Alexander Sidorenko,et al. A correlation inequality for bipartite graphs , 1993, Graphs Comb..
[14] W. T. Gowers,et al. Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .
[15] David Conlon,et al. Bounds for graph regularity and removal lemmas , 2011, ArXiv.
[16] Nathan Linial,et al. Lifts, Discrepancy and Nearly Optimal Spectral Gap* , 2006, Comb..
[17] V. Rödl,et al. On The Triangle Removal Lemma For Subgraphs of Sparse Pseudorandom Graphs , 2010 .
[18] V. Rödl,et al. Regularity Lemmas for Graphs , 2010 .
[19] W. T. Gowers,et al. Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.
[20] W. T. Gowers,et al. Quasirandomness, Counting and Regularity for 3-Uniform Hypergraphs , 2006, Combinatorics, Probability and Computing.
[21] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[22] Yoshiharu Kohayakawa,et al. Small subsets inherit sparse epsilon-regularity , 2007, J. Comb. Theory, Ser. B.
[23] Stefanie Gerke,et al. A probabilistic counting lemma for complete graphs , 2007, Random Struct. Algorithms.
[24] Yoshiharu Kohayakawa,et al. Small subsets inherit sparse ε-regularity , 2004 .
[25] Paul Erdös,et al. Cutting a graph into two dissimilar halves , 1988, J. Graph Theory.
[26] Stefanie Gerke,et al. The sparse regularity lemma and its applications , 2005, BCC.
[27] Noga Alon,et al. Approximating the independence number via theϑ-function , 1998, Math. Program..
[28] A. Goodman. On Sets of Acquaintances and Strangers at any Party , 1959 .
[29] B. Sudakov,et al. Pseudo-random Graphs , 2005, math/0503745.
[30] Vojtech Rödl,et al. The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.
[31] D. Conlon. A new upper bound for diagonal Ramsey numbers , 2006, math/0607788.
[32] A. Thomason. A Disproof of a Conjecture of Erdős in Ramsey Theory , 1989 .
[33] R. Graham,et al. Quasi-random set systems , 1991 .
[34] T. Tao,et al. The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.
[35] P. ERDŐS-A. HAJNAL-L. PÓSA. STRONG EMBEDDINGS OF GRAPHS INTO COLORED GRAPHS , 2004 .
[36] Elad Aigner-Horev,et al. Extremal results for odd cycles in sparse pseudorandom graphs , 2013, Electron. Notes Discret. Math..
[37] Daniel Král,et al. A combinatorial proof of the Removal Lemma for Groups , 2008, J. Comb. Theory, Ser. A.
[38] Yoshiharu Kohayakawa,et al. Sparse partition universal graphs for graphs of bounded degree , 2011 .
[39] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[40] Vojtech Rödl,et al. Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.
[41] Vojtech Rödl,et al. The Ramsey number of a graph with bounded maximum degree , 1983, J. Comb. Theory B.
[42] Fan Chung Graham,et al. Sparse Quasi-Random Graphs , 2002, Comb..
[43] W. T. Gowers,et al. Quasirandom Groups , 2007, Combinatorics, Probability and Computing.
[44] Benny Sudakov,et al. Two remarks on the Burr-Erdos conjecture , 2009, Eur. J. Comb..
[45] V. Sós,et al. Convergent Sequences of Dense Graphs I: Subgraph Frequencies, Metric Properties and Testing , 2007, math/0702004.
[46] Alex D. Scott,et al. Szemerédi's Regularity Lemma for Matrices and Sparse Graphs , 2010, Combinatorics, Probability and Computing.
[47] László Lovász,et al. Limits of dense graph sequences , 2004, J. Comb. Theory B.
[48] Steve Butler,et al. Induced-Universal Graphs for Graphs with Bounded Maximum Degree , 2009, Graphs Comb..
[49] P. Erdös. On the structure of linear graphs , 1946 .
[50] Paul Erdös,et al. Imbalances in k-colorations , 1971, Networks.
[51] Jacob Fox,et al. A new proof of the graph removal lemma , 2010, ArXiv.
[52] J. Sheehan,et al. On the number of complete subgraphs contained in certain graphs , 1981, J. Comb. Theory, Ser. B.
[53] Yoshiharu Kohayakawa,et al. Turán's theorem for pseudo-random graphs , 2007, J. Comb. Theory, Ser. A.
[54] Yoshiharu Kohayakawa,et al. Regular pairs in sparse random graphs I , 2003, Random Struct. Algorithms.
[55] V. Rödl,et al. The counting lemma for regular k-uniform hypergraphs , 2006 .
[56] N. Alon,et al. testing of large graphs , 2000 .
[57] Vojtech Rödl,et al. On Induced Ramsey Numbers for Graphs with Bounded Maximum Degree , 1996, J. Comb. Theory, Ser. B.
[58] Yoshiharu Kohayakawa,et al. Turán's Extremal Problem in Random Graphs: Forbidding Even Cycles , 1995, J. Comb. Theory, Ser. B.
[59] Linyuan Lu,et al. Explicit Construction of Small Folkman Graphs , 2008, SIAM J. Discret. Math..
[60] Noga Alon,et al. Additive approximation for edge-deletion problems , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[61] Vojtech Rödl,et al. Ramsey properties of random discrete structures , 2010, Random Struct. Algorithms.
[62] M. Simonovits,et al. Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .
[63] Terence Tao. A variant of the hypergraph removal lemma , 2006, J. Comb. Theory, Ser. A.
[64] V. Rödl,et al. Embedding graphs with bounded degree in sparse pseudorandom graphs , 2004 .
[65] W. T. Gowers,et al. Combinatorial theorems in sparse random sets , 2010, 1011.4310.
[66] Y. Kohayakawa. Szemerédi's regularity lemma for sparse graphs , 1997 .
[67] Benny Sudakov,et al. A generalization of Turán's theorem , 2005, J. Graph Theory.
[68] Vojtech Rödl,et al. On graphs with linear Ramsey numbers , 2000, J. Graph Theory.
[69] Vojtech Rödl,et al. Quasi-Randomness and Algorithmic Regularity for Graphs with General Degree Distributions , 2007, SIAM J. Comput..
[70] Noga Alon,et al. Efficient Testing of Large Graphs , 2000, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[71] B. Szegedy,et al. On the logarithimic calculus and Sidorenko's conjecture , 2011, 1107.1153.
[72] Benny Sudakov,et al. Induced Ramsey-type theorems , 2007, Electron. Notes Discret. Math..
[73] Jacob Fox,et al. There exist graphs with super‐exponential Ramsey multiplicity constant , 2008, J. Graph Theory.
[74] N. Linial,et al. Lifts, Discrepancy and Nearly Optimal Spectral Gaps , 2003 .
[75] Andrzej Dudek,et al. On the Folkman Number f(2, 3, 4) , 2008, Exp. Math..
[76] M. Simonovits. Extremal Graph Problems , Degenerate Extremal Problems , and Supersaturated Graphs , 2010 .
[77] Benny Sudakov,et al. Chromatic number, clique subdivisions, and the conjectures of Hajós and Erdős-Fajtlowicz , 2013, Comb..
[78] Stefan A. Burr,et al. On the Ramsey multiplicities of graphs - problems and recent results , 1980, J. Graph Theory.
[79] T. Lu. ON K4-FREE SUBGRAPHS OF RANDOM GRAPHS , 1997 .
[80] Vladimir Nikiforov,et al. The number of cliques in graphs of given order and size , 2007, 0710.2305.
[81] B. Green. A Szemerédi-type regularity lemma in abelian groups, with applications , 2003, math/0310476.
[82] Alan M. Frieze,et al. An efficient sparse regularity concept , 2009, SODA.
[83] Yoshiharu Kohayakawa,et al. Szemerédi’s Regularity Lemma and Quasi-randomness , 2003 .
[84] Vojtech Rödl,et al. A Fast Approximation Algorithm for Computing the Frequencies of Subgraphs in a Given Graph , 1995, SIAM J. Comput..
[85] Fan Chung Graham,et al. Quasi‐random graphs with given degree sequences , 2008, Random Struct. Algorithms.
[86] Frank Plumpton Ramsey,et al. On a Problem of Formal Logic , 1930 .
[87] F. Chung. A Spectral Turán Theorem , 2005, Combinatorics, Probability and Computing.
[88] P. Erdös,et al. On the structure of linear graphs , 1946 .