The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations
暂无分享,去创建一个
[1] R. Strichartz. Sub-Riemannian geometry , 1986 .
[2] E. Stein,et al. Balls and metrics defined by vector fields I: Basic properties , 1985 .
[3] J. Mitchell. On Carnot-Carathéodory metrics , 1985 .
[4] A. Nachman. The wave equation on the heisenberg group , 1982 .
[5] R. Brockett. Control Theory and Singular Riemannian Geometry , 1982 .
[6] M. Fliess,et al. Fonctionnelles causales non linaires et indtermines non commutatives , 1981 .
[7] Roger W. Brockett. Volterra series and geometric control theory , 1976, Autom..
[8] Kuo-Tsai Chen. On a generalization of Picard's approximation , 1966 .
[9] Kuo-Tsai Chen. Expansion of solutions of differential systems , 1963 .
[10] Kuo-Tsai Chen. An expansion formula for differential equations , 1962 .
[11] Kuo-Tsai Chen,et al. Formal differential equations , 1961 .
[12] W. Gröbner,et al. Die Lie-Reihen und ihre Anwendungen , 1960 .
[13] Kuo-Tsai Chen,et al. Integration of Paths, Geometric Invariants and a Generalized Baker- Hausdorff Formula , 1957 .
[14] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.