Chemical anatomy of primate basal ganglia

This paper provides an overview of the anatomical and functional organization of the most prominent chemospecific neuronal systems that compose the basal ganglia in primates. Emphasis is placed on the heterogeneity and diversity of small-molecule transmitters, neuroactive peptides and proteins used by basal ganglia neurons. Dopaminergic, serotoninergic and cholinergic neuronal systems are shown to comprise multiple subsystems organized according to highly specific patterns. These subsystems differentially regulate gene expression of several neuroactive peptides, including tachykinins, enkephalins, dynorphin, somatostatin, and neuropeptide Y, that are used by distinct subsets of basal ganglia neurons. Glutamatergic excitatory inputs establish distinct functional territories within the basal ganglia, and neurons in each of these territories act upon other brain neuronal systems through a GABAergic disinhibitory output mechanism. A striking complementary pattern of distribution of the calcium-binding proteins parvalbumin and calbindin D-28k is noted in all basal ganglia components. The limbic system-associated membrane protein (LAMP) is confined chiefly to basal ganglia sectors that are anatomically and functionally related to limbic system structures; these may serve as functional interfaces between the basal ganglia and the limbic system. The functional status of the various basal ganglia chemospecific systems in neurodegenerative diseases, such as Parkinson's disease and Huntington's chorea, is examined. It is concluded that these multiple transmitter-related systems cannot be analyzed separately as they form highly complex and interactive neuronal networks. These complexities should be taken into account to reach a better understanding of the functions of primate basal ganglia in health and disease.

[1]  T. Kaneko,et al.  Substance P receptor-immunoreactive neurons in the rat neostriatum are segregated into somatostatinergic and cholinergic aspiny neurons , 1993, Brain Research.

[2]  Mircea Steriade,et al.  Brain cholinergic systems , 1990 .

[3]  S. Christakos,et al.  Vitamin D-dependent calcium-binding protein in rat brain: biochemical and immunocytochemical characterization. , 1983, Endocrinology.

[4]  A. Dray Serotonin in the basal ganglia: functions and interactions with other neuronal pathways. , 1981, Journal de physiologie.

[5]  H. Fibiger,et al.  ACETYLCHOLINESTERASE IN THE SUBSTANTIA NIGRA AND CAUDATE‐PUTAMEN OF THE RAT: PROPERTIES AND LOCALIZATION IN DOPAMINERGIC NEURONS , 1978, Journal of neurochemistry.

[6]  André Parent,et al.  Convergence of subthalamic and striatal efferents at pallidal level in primates: an anterograde double-labeling study with biocytin and PHA-L , 1992, Brain Research.

[7]  M. Ishikawa,et al.  Histochemical mapping of catecholaminergic neurons and their ascending fiber pathways in the rhesus monkey brain , 1982, Brain Research Bulletin.

[8]  L. Poirier Experimental and histological study of midbrain dyskinesias. , 1960, Journal of neurophysiology.

[9]  S. Vincent,et al.  Striatal neurons containing both somatostatin‐ and avian pancreatic polypeptide (APP)‐like immunoreactivities and NADPH‐diaphorase activity: A light and electron microscopic study , 1983, The Journal of comparative neurology.

[10]  M R Park,et al.  An intracellular HRP study of the rat globus pallidus. I. Responses and light microscopic analysis , 1982, The Journal of comparative neurology.

[11]  R. Ferrante,et al.  Tyrosine hydroxylase-like immunoreactivity is distributed in the matrix compartment of normal human and Huntington's disease striatum , 1987, Brain Research.

[12]  A. Parent,et al.  Striatal changes in preproenkephalin mRNA levels in parkinsonian monkeys , 1994, Neuroreport.

[13]  C. Gerfen,et al.  NEOSTRIATAL DOPAMINE RECEPTORS. REPLY , 1994 .

[14]  A. Parent,et al.  Neuropeptide Y-immunoreactive neurons in the striatum of cat and monkey: Morphological characteristics, intrinsic organization and co-localization with somatostatin , 1986, Brain Research.

[15]  S Fahn,et al.  Monoamines in the human neostriatum: topographic distribution in normals and in Parkinson's disease and their role in akinesia, rigidity, chorea, and tremor. , 1971, Journal of the neurological sciences.

[16]  H. Kita,et al.  Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study , 1990, Brain Research.

[17]  D. Bonthron,et al.  Propolypeptide of von Willebrand factor circulates in blood and is identical to von Willebrand antigen II. , 1986, Science.

[18]  A. Parent,et al.  Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey , 1990, The Journal of comparative neurology.

[19]  H. Kita,et al.  Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations , 1988, Brain Research.

[20]  S. Algeri,et al.  Modulation of striatal dopamine metabolism by the activity of dorsal raphe serotonergic afferences , 1987, Brain Research.

[21]  A. Parent,et al.  Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys. , 1991, NeuroReport.

[22]  A. M. Snyder,et al.  Apparent sprouting of striatal serotonergic terminals after dopamine-depleting brain lesions in neonatal rats , 1984, Brain Research.

[23]  Y. Sano,et al.  Immunohistochemical demonstration of serotonin nerve fibers in the subthalamic nucleus of the rat, cat and monkey , 1985, Neuroscience Letters.

[24]  A. Graybiel Correspondence between the Dopamine islands and striosomes of the mammalian striatum , 1984, Neuroscience.

[25]  J. Bolam,et al.  Facilitation of a dendritic calcium conductance by 5-hydroxytryptamine in the substantia nigra , 1988, Nature.

[26]  Robert L. Isaacson,et al.  A fuzzy limbic system , 1992, Behavioural Brain Research.

[27]  J. Bruno,et al.  Inhibition of striatal acetylcholine release by serotonin and dopamine after the intracerebral administration of 6-hydroxydopamine to neonatal rats , 1988, Brain Research.

[28]  A. Carlsson,et al.  The occurrence, distribution and physiological role of catecholamines in the nervous system. , 1959, Pharmacological reviews.

[29]  C. Leonard,et al.  Connections of the median and dorsal raphe nuclei in the rat: An autoradiographic and degeneration study , 1974, The Journal of comparative neurology.

[30]  R. Wurtz,et al.  Modification of saccadic eye movements by GABA-related substances. II. Effects of muscimol in monkey substantia nigra pars reticulata. , 1985, Journal of neurophysiology.

[31]  A. Parent,et al.  Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: A light and electron microscopic study of the thalamostriatal projection in relation to striatal heterogeneity , 1992, The Journal of comparative neurology.

[32]  J. S. Schneider,et al.  Relative sparing of the dopaminergic innervation of the globus pallidus in monkeys made hemi-parkinsonian by intracarotid MPTP infusion , 1991, Brain Research.

[33]  A. Malliani,et al.  I. Synaptic potentials and discharge characteristics of caudate neurons activated by thalamic stimulation. , 1967, Brain research.

[34]  L. Orci,et al.  Immunohistochemical mapping of calcium-binding protein immunoreactivity in the rat central nervous system , 1984, Brain Research.

[35]  C. Gerfen Substance P (neurokinin-1) receptor mRNA is selectively expressed in cholinergic neurons in the striatum and basal forebrain , 1991, Brain Research.

[36]  C. Hammond,et al.  Pharmacological blockade of the globus pallidus-induced inhibitory response of subthalamic cells in the rat , 1980, Brain Research.

[37]  P. Somogyi,et al.  Fine structural studies on a type of somatostatin‐immurioreactive neuron and its synaptic connections in the rat neostriatum: A correlated light and electron microscopic study , 1983, The Journal of comparative neurology.

[38]  C. Hammond,et al.  Excitatory effect of iontophoretically applied dopamine on identified neurons of the rat subthalamic nucleus , 1986, Brain Research.

[39]  D L Price,et al.  Alzheimer's disease: a disorder of cortical cholinergic innervation. , 1983, Science.

[40]  C. Bradshaw,et al.  EFFECTS OF DESIPRAMINE ON NEURONAL RESPONSES TO DOPAMINE, NORADRENALINE, 5‐HYDROXYTRYPTAMINE AND ACETYLCHOLINE IN THE CAUDATE NUCLEUS OF THE RAT , 1975, British journal of pharmacology.

[41]  P. Emson,et al.  Calbindin D28K as a marker for the degeneration of the striatonigral pathway in Huntington's disease , 1990, Brain Research.

[42]  M. H. Joseph,et al.  VI. The concurrent estimation of the major monoamine metabolites in human and non-human primate brain by HPLC with fluorescence and electrochemical detection , 1981 .

[43]  M M Mesulam,et al.  Human reticular formation: Cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to forebrain cholinergic neurons , 1989, The Journal of comparative neurology.

[44]  R. Quirion,et al.  Deficits in the somatostatin SS1 receptor sub-type in frontal and temporal cortices in Alzheimer's disease , 1992, Brain Research.

[45]  A. Parent,et al.  Organization of efferent projections of the subthalamic nucleus in the squirrel monkey as revealed by retrograde labeling methods , 1987, Brain Research.

[46]  A. Parent,et al.  Dopaminergic innervation of the basal ganglia in the squirrel monkey as revealed by tyrosine hydroxylase immunohistochemistry , 1989, The Journal of comparative neurology.

[47]  M. Garcia-Munoz,et al.  Interactions between serotonergic and dopaminergic systems in rat brain demonstrated by small unilateral lesions of the raphe nuclei. , 1979, European journal of pharmacology.

[48]  R. Roth,et al.  Serotonin-containing neuronal perikarya and terminals: differential effects of P-chlorophenylalanine. , 1973, Brain research.

[49]  I. Divac,et al.  Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain , 1981, Neuroscience.

[50]  S. Nakanishi,et al.  Sequence and expression of a metabotropic glutamate receptor , 1991, Nature.

[51]  A. Crane,et al.  Changes in local cerebral glucose utilization associated with Parkinson's syndrome induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the primate. , 1987, Life sciences.

[52]  R. Baisden,et al.  Localization of putative cholinergic neurons innervating the anteroventral thalamus , 1980, Brain Research Bulletin.

[53]  Forbes Cd,et al.  Letter: Haemophilia carriers. , 1974 .

[54]  D. Salmon,et al.  Neuropsychological evidence for multiple implicit memory systems: a comparison of Alzheimer's, Huntington's, and Parkinson's disease patients , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  G B KOELLE,et al.  A Histochemical Method for Localizing Cholinesterase Activity.* , 1949, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[56]  S. N. Haber,et al.  The organization of midbrain projections to the ventral striatum in the primate , 1994, Neuroscience.

[57]  L. Descarries,et al.  Quantification of the dopamine innervation in adult rat neostriatum , 1986, Neuroscience.

[58]  C. W. Ragsdale,et al.  Fibers from the basolateral nucleus of the amygdala selectively innervate striosomes in the caudate nucleus of the cat , 1988, The Journal of comparative neurology.

[59]  S. Hockfield,et al.  A surface antigen expressed by a subset of neurons in the vertebrate central nervous system. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[60]  P. Emson,et al.  Calbindin-immunoreactive cholinergic neurones in the nucleus basalis of Meynert in Alzheimer-type dementia , 1989, Brain Research.

[61]  D. Purves,et al.  Dynamic changes in the dendritic geometry of individual neurons visualized over periods of up to three months in the superior cervical ganglion of living mice , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  D. German,et al.  1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonian syndrome in Macaca fascicularis: Which midbrain dopaminergic neurons are lost? , 1988, Neuroscience.

[63]  P. Goldman-Rakic,et al.  Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  Saavedra Jm Distribution of serotonin and synthesizing enzymes in discrete areas of the brain. , 1977 .

[65]  H. Fibiger,et al.  NADPH-diaphorase: A selective histochemical marker for the cholinergic neurons of the pontine reticular formation , 1983, Neuroscience Letters.

[66]  R. M. Beckstead,et al.  Distribution of D1 and D2 dopamine receptors in the basal ganglia of the cat determined by quantitative autoradiography , 1988, The Journal of comparative neurology.

[67]  A. Parent,et al.  The centre me´dian and parafascicular thalamic nuclei project respectively to the sensorimotor and associative-limbic striatal territories in the squirrel monkey , 1990, Brain Research.

[68]  M. Cassell,et al.  Neuronal architecture in the rat central nucleus of the amygdala: A cytological, hodological, and immunocytochemical study , 1986, The Journal of comparative neurology.

[69]  L. Heimer,et al.  New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: The striatopallidal, amygdaloid, and corticopetal components of substantia innominata , 1988, Neuroscience.

[70]  André Parent,et al.  Differential patterns of arborization of striatal and subthalamic fibers in the two pallidal segments in primates , 1992, Brain Research.

[71]  J. Langston,et al.  The effect of deprenyl (selegiline) on the natural history of Parkinson's disease. , 1989, Science.

[72]  M. Palkovits,et al.  Serotonin content of the brain stem nuclei in the rat. , 1974, Brain research.

[73]  M. Herkenham,et al.  Mismatches between neurotransmitter and receptor localizations in brain: observations and implications , 1987, Neuroscience.

[74]  D. Amaral,et al.  An autoradiographic study of the projections of the central nucleus of the monkey amygdala , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  L. Descarries,et al.  Serotonin innervation in adult rat neostriatum. II. Ultrastructural features: a radioautographic and immunocytochemical study , 1989, Brain Research.

[76]  A. D. Smith,et al.  Substance P-Containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat , 1986, Brain Research.

[77]  C. Marsden,et al.  Repeated administration of N-methyl-4-phenyl 1,2,5,6-tetrahydropyridine to rats is not toxic to striatal dopamine neurones. , 1984, Biochemical pharmacology.

[78]  A. Parent,et al.  Distribution of substance p and enkephalin-like immunoreactivity in the substantia nigra of rat, cat and monkey , 1984, Brain Research Bulletin.

[79]  W. Nauta,et al.  Projections of the lentiform nucleus in the monkey. , 1966, Brain research.

[80]  T. R. Stratford,et al.  Evidence that serotonergic projections to the substantia nigra in the rat arise in the dorsal, but not the median, raphe nucleus , 1987, Neuroscience Letters.

[81]  J. Langston,et al.  Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. , 1983, Science.

[82]  James S Wilson,et al.  MPTP produces a mosaic-like pattern of terminal degeneration in the caudate nucleus of dog , 1987, Brain Research.

[83]  R. Robertson,et al.  The role of striatopallidal neurones utilizing gamma-aminobutyric acid in the pathophysiology of MPTP-induced parkinsonism in the primate: evidence from [3H]flunitrazepam autoradiography , 1990, Brain Research.

[84]  M. Sugimori,et al.  Convergence of excitatory synaptic inputs to caudate spiny neurons , 1977, Brain Research.

[85]  F. Keller,et al.  Developmental and regeneration-associated regulation of the limbic system associated membrane protein in explant cultures of the rat brain , 1989, Neuroscience.

[86]  A. Graybiel,et al.  Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease , 1988, Nature.

[87]  J. Coyle,et al.  Alzheimer disease: Evidence for selective loss of cholinergic neurons in the nucleus basalis , 1981, Annals of neurology.

[88]  P. Petrusz,et al.  Molecular requirements for haften binding to antibodies against glutamate and aspartate , 1992, Neuroscience.

[89]  Turner Aj,et al.  Treatment of Diphtheria , 1879, Buffalo Medical and Surgical Journal.

[90]  A. Parent,et al.  Distinct afferents to internal and external pallidal segments in the squirrel monkey , 1989, Neuroscience Letters.

[91]  A. Dray The physiology and pharmacology of mammalian basal ganglia , 1980, Progress in Neurobiology.

[92]  A. Björklund,et al.  Topography of the monoamine neuron systems in the human brain as revealed in fetuses. , 1973, Acta physiologica Scandinavica. Supplementum.

[93]  M. Chesselet,et al.  Subpopulations of mesencephalic dopaminergic neurons express different levels of tyrosine hydroxylase messenger RNA , 1991, The Journal of comparative neurology.

[94]  A. Parent,et al.  Increased glutamate decarboxylase mRNA levels in the striatum and pallidum of MPTP-treated primates , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[95]  P. Mcgeer,et al.  Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28K , 1990, Brain Research.

[96]  A. Parent,et al.  Distribution of neuropeptide Y immunoreactivity in the basal forebrain and upper brainstem of the squirrel monkey (saimiri sciureus) , 1985, The Journal of comparative neurology.

[97]  P. Maclean,et al.  A brainstem atlas of catecholaminergic neurons and serotonergic perikarya in a pygmy primate (Cebuella pygmaea) , 1978, The Journal of comparative neurology.

[98]  G. Percheron,et al.  A Golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic arborizations , 1984, The Journal of comparative neurology.

[99]  J. Palacios,et al.  Binding sites for 5-hydroxytryptamine-2 receptor agonists are predominantly located in striosomes in the human basal ganglia. , 1994, Brain research. Molecular brain research.

[100]  H. Groenewegen,et al.  Organization of the efferent projections of the nucleus accumbens to pallidal, hypothalamic, and mesencephalic structures: A tracing and immunohistochemical study in the cat , 1984, The Journal of comparative neurology.

[101]  J. Penney,et al.  Differential loss of striatal projection neurons in Huntington disease. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[102]  L. Maler,et al.  Immunohistochemical mapping of vitamin D-dependent calcium-binding protein in brain , 1981, Nature.

[103]  Michel Geffard,et al.  First demonstration of highly specific and sensitive antibodies against dopamine , 1984, Brain Research.

[104]  P. Emson,et al.  LOSS OF MATRIX CALCIUM-BINDING PROTEIN-CONTAINING NEURONS IN HUNTINGTON'S DISEASE , 1988, The Lancet.

[105]  A. Parent,et al.  Multiple striatal representation in primate substantia nigra , 1994, The Journal of comparative neurology.

[106]  A. Parent,et al.  Complementary Distribution of Calbindin D‐28k and Parvalbumin in the Basal Forebrain and Midbrain of the Squirrel Monkey , 1991, The European journal of neuroscience.

[107]  M. J. Christie,et al.  Excitatory amino acid projections to the nucleus accumbens septi in the rat: A retrograde transport study utilizingd[3H]aspartate and [3H]GABA , 1987, Neuroscience.

[108]  D. Salvert,et al.  Differential projections of the nucleus raphe dorsalis and nucleus raphe centralis as revealed by autoradiography , 1975, Brain Research.

[109]  T. Hattori,et al.  Dorsal raphe cells with collateral projections to the caudate-putamen and substantia nigra: A fluorescent retrograde double labeling study in the rat , 1980, Brain Research.

[110]  J. E. Vaughn,et al.  Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: A correlated light and electron microscopic study of cholinergic neurons and synapses , 1985, The Journal of comparative neurology.

[111]  Cathleen Conzales,et al.  Amygdalonigral pathway: An anterograde study in the rat with Phaseolus vulgaris leucoagglutinin (PHA‐L) , 1990, The Journal of comparative neurology.

[112]  J. Palacios,et al.  Serotonin receptors in the human brain—IV. Autoradiographic mapping of serotonin-2 receptors , 1987, Neuroscience.

[113]  D. Jacobowitz,et al.  Hemiparkinsonism in monkeys after unilateral internal carotid artery infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). , 1986, Life sciences.

[114]  P. Streit Selective retrograde labeling indicating the transmitter of neuronal pathways , 1980, The Journal of comparative neurology.

[115]  M Goldstein,et al.  Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain II. Tyrosine hydroxylase in the telencephalon. , 1977, Medical biology.

[116]  A. Parent,et al.  Cortical input to parvalbumin-immunoreactive neurones in the putamen of the squirrel monkey , 1992, Brain Research.

[117]  K. Baimbridge,et al.  Calcium-binding proteins in the nervous system , 1992, Trends in Neurosciences.

[118]  A. Levey,et al.  Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (Substantia innominata), and hypothalamus in the rhesus monkey , 1983, The Journal of comparative neurology.

[119]  Charles J. Wilson,et al.  Parvalbumin‐containing gabaergic interneurons in the rat neostriatum , 1990, The Journal of comparative neurology.

[120]  A. Levey,et al.  Monoclonal antibodies to choline acetyltransferase: production, specificity, and immunohistochemistry , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[121]  B. A. Flumerfelt,et al.  Acetylcholinesterase in non-cholinergic neurones: a histochemical study of dorsal root ganglion cells in the rat. , 1971, Brain research.

[122]  P. Levitt,et al.  A unique membrane protein is expressed on early developing limbic system axons and cortical targets , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[123]  M. Besson,et al.  Radioautographic study of in vivo incorporation of3H-monoamines in the cat caudate nucleus: Identification of serotoninergic fibers , 1976, Brain Research.

[124]  G. Percheron,et al.  A topographic study of the course of nigral axons and of the distribution of pallidal axonal endings in the centre me´dian-parafascicular complex of macaques , 1988, Brain Research.

[125]  G. Uhl Neurotransmitter transporters (plus): a promising new gene family , 1992, Trends in Neurosciences.

[126]  A. Parent,et al.  The subcortical afferents to caudate nucleus and putamen in primate: A fluorescence retrograde double labeling study , 1983, Neuroscience.

[127]  C. W. Ragsdale,et al.  The fronto-striatal projection in the cat and monkey and its relationship to inhomogeneities established by acetylcholinesterase histochemistry , 1981, Brain Research.

[128]  André Parent,et al.  Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity , 1988, Brain Research.

[129]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization , 1992, Trends in Neurosciences.

[130]  H. Nakanishi,et al.  Neostriatal evoked inhibition and effects of dopamine on globus pallidal neurons in rat slice preparations , 1985, Brain Research.

[131]  H. Fibiger,et al.  An anatomical and electrophysiological investigation of the serotonergic projection from the dorsal raphe nucleus to the substantia nigra in the rat , 1977, Neuroscience.

[132]  Michel Jouvet,et al.  The raphe nuclei of the cat brain stem: A topographical atlas of their efferent projections as revealed by autoradiography , 1976, Brain Research.

[133]  M. Mouroux,et al.  Evidence that the parafascicular projection to the subthalamic nucleus is glutamatergic. , 1993, Neuroreport.

[134]  D. Felten,et al.  Monoamine distribution in primate brain. V. Monoaminergic nuclei: Anatomy, pathways, and local organization , 1982, Brain Research Bulletin.

[135]  P. Levitt,et al.  A membrane glycoprotein associated with the limbic system mediates the formation of the septo- hippocampal pathway in vitro , 1989, Neuron.

[136]  L. Brown,et al.  A direct role of dopamine in the rat subthalamic nucleus and an adjacent intrapeduncular area. , 1979, Science.

[137]  Neil W Richtand,et al.  MPTP produces a pattern of nigrostriatal degeneration which coincides with the mosaic organization of the caudate nucleus , 1988, Brain Research.

[138]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. , 1992, Annual review of neuroscience.

[139]  W. Nauta,et al.  An intricately patterned prefronto‐caudate projection in the rhesus monkey , 1977, The Journal of comparative neurology.

[140]  A. Graybiel Neurotransmitters and neuromodulators in the basal ganglia , 1990, Trends in Neurosciences.

[141]  H. Steinbusch,et al.  Distribution of serotonin-immunoreactivity in the central nervous system of the rat—Cell bodies and terminals , 1981, Neuroscience.

[142]  P. Maclean Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). , 1952, Electroencephalography and clinical neurophysiology.

[143]  J. Kebabian,et al.  Multiple receptors for dopamine , 1979, Nature.

[144]  A. Parent,et al.  Morphological characteristics of acetylcholinesterase-containing neurons in the CNS of DFP-treated monkeys Part 2. Diencephalic and medial telencephalic structures , 1977, Journal of the Neurological Sciences.

[145]  M. Mesulam,et al.  Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1–Ch6) , 1983, Neuroscience.

[146]  D. Salmon,et al.  Impaired learning of a motor skill in patients with Huntington's disease. , 1988, Behavioral neuroscience.

[147]  A. Beaudet,et al.  Dopaminergic projection from nucleus raphe dorsalis to neostriatum in the rat , 1986, The Journal of comparative neurology.

[148]  D. Kooy,et al.  Serotonergic and non-serotonergic projections from the nucleus raphe dorsalis to the caudate-putamen complex in the rat, studied by a combined immunofluorescence and fluorescent retrograde axonal labeling technique , 1980, Neuroscience Letters.

[149]  A. Parent,et al.  Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus) , 1986, Neuroscience.

[150]  L. Butcher,et al.  Cholinergic neurons in the caudate-putamen complex proper are intrinsically organized: A combined evans blue and acetylcholinesterase analysis , 1981, Brain Research Bulletin.

[151]  J. Glowinski,et al.  Topographical distribution of dopaminergic innervation and of dopaminergic receptors in the rat striatum. I. Microestimation of [3H]dopamine uptake and dopamine content in microdiscs , 1976, Brain Research.

[152]  Jeffrey T. Keller,et al.  Connections of the subthalamic nucleus in the monkey , 1981, Brain Research.

[153]  P. Widdowson,et al.  Quantitative receptor autoradiography demonstrates a differential distribution of neuropeptide-Y Y1 and Y2 receptor subtypes in human and rat brain , 1993, Brain Research.

[154]  O. Hornykiewicz,et al.  Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on the regional distribution of brain monoamines in the rhesus monkey , 1991, Neuroscience.

[155]  A. Graybiel,et al.  Subdivisions of the primate substantia nigra pars compacta detected by acetylcholinesterase histochemistry , 1987, Brain Research.

[156]  D. Standaert,et al.  Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[157]  J. Penney,et al.  Preferential loss of striato‐external pallidal projection neurons in presymptomatic Huntington's disease , 1992, Annals of neurology.

[158]  R. McKay,et al.  Monoclonal antibodies distinguish identifiable neurones in the leech , 1981, Nature.

[159]  H. Katsumaru,et al.  GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and dentate gyrus , 1987, Brain Research.

[160]  A. Parent,et al.  Projections of cholinergic and non-cholinergic neurons of the brainstem core to relay and associational thalamic nuclei in the cat and macaque monkey , 1988, Neuroscience.

[161]  W. Koella,et al.  The response of striatal cells upon stimulation of the dorsal and median raphe nuclei , 1977, Brain Research.

[162]  C. Andressen,et al.  Calbindin D‐28k Protein and mRNA Localization in the Rat Brain , 1990, The European journal of neuroscience.

[163]  R. Roth,et al.  SEROTONIN AND DOPAMINE METABOLITES IN BRAIN REGIONS AND CEREBROSPINAL FLUID OF A PRIMATE SPECIES: EFFECTS OF KETAMINE AND FLUPHENAZINE , 1979, Journal of neurochemistry.

[164]  J. Pearson,et al.  Human brainstem catecholamine neuronal anatomy as indicated by immunocytochemistry with antibodies to tyrosine hydroxylase , 1983, Neuroscience.

[165]  K. Fuxe,et al.  DEMONSTRATION AND MAPPING OUT OF NIGRO-NEOSTRIATAL DOPAMINE NEURONS. , 1964, Life sciences.

[166]  G. Thieme,et al.  FLUORESCENCE OF CATECHOL AMINES AND RELATED COMPOUNDS CONDENSED WITH FORMALDEHYDE , 1962 .

[167]  G. Reynolds,et al.  Decreased glutamic acid and increased 5-hydroxytryptamine in Huntington's disease brain , 1987, Neuroscience Letters.

[168]  J. Price,et al.  Sources of presumptive glutamergic/aspartergic afferents to the rat ventral striatopallidal region , 1987, The Journal of comparative neurology.

[169]  D L Price,et al.  The pedunculopontine nucleus in Parkinson's disease , 1989, Annals of neurology.

[170]  S. Hsu,et al.  Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. , 1981, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[171]  P. Strange Multiple dopamine receptors: relevance for neurodegenerative disorders. , 1994, Biochemical Society transactions.

[172]  P. Soubrié,et al.  Functional aspects of serotonin transmission in the basal ganglia: A review and in vivo approach using the push-pull cannula technique , 1984, Neuroscience.

[173]  M. Harding,et al.  Structure of chick chromosomal genes for calbindin and calretinin. , 1988, Journal of molecular biology.

[174]  B. Bloch,et al.  Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[175]  P. Tongroach,et al.  Neuropharmacological studies on the nigro-striatal and raphe-striatal system in the rat. , 1978, European journal of pharmacology.

[176]  C. Gerfen,et al.  Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study , 1988, Brain Research.

[177]  H. Fibiger,et al.  Distribution of central cholinergic neurons in the baboon (papio papio). II. A topographic atlas correlated with catecholamine neurons , 1985, The Journal of comparative neurology.

[178]  R. Weinberg,et al.  Glutamate in thalamic fibers terminating in layer IV of primary sensory cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[179]  Current Concepts in Parkinson's Disease Research , 1993 .

[180]  Neostriatal dopamine receptors. , 1994 .

[181]  J. Storm-Mathisen,et al.  Glutamate‐ and GABA‐containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique , 1984, The Journal of comparative neurology.

[182]  L. Heimer,et al.  Ventral striatum and ventral pallidum Components of the motor system? , 1982, Trends in Neurosciences.

[183]  H. Tokuno,et al.  A morphological evidence for monosynaptic projections from the nucleus tegmenti pedunculopontinus pars compacta (TPC) to nigrostriatal projection neurons , 1988, Neuroscience Letters.

[184]  I. Mitchell,et al.  A semi-quantitative atlas of 5-hydroxytryptamine-1 receptors in the primate brain , 1986, Neuroscience.

[185]  A. Parent,et al.  Morphological characteristics of the acetylcholin-esterase-containing neurons in the CNS of DFP-treated monkeys Part 1. Extrapyramidal and related structures , 1977, Journal of the Neurological Sciences.

[186]  V. Chan‐Palay,et al.  Indoleamine neurons and their processes in the normal rat brain and in chronic diet‐induced thiamine deficiency demonstrated by uptake of 3H‐Serotonin , 1977, The Journal of comparative neurology.

[187]  N. Aronin,et al.  Ultrastructural features of immunoreactive somatostatin neurons in the rat caudate nucleus , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[188]  G. Battaglia,et al.  Methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) cause selective ablation of serotonergic axon terminals in forebrain: immunocytochemical evidence for neurotoxicity , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[189]  F. F. Weight,et al.  Dopaminergic mechanisms in subthalamic nucleus of rat: analysis using horseradish peroxidase and microiontophoresis , 1985, Brain Research.

[190]  M. Titeler,et al.  Detection and Characterization of the Serotonin 5‐HT1D Receptor in Rat and Human Brain , 1988 .

[191]  R. S. Sloviter Calcium‐binding protein (calbindin‐D28k) and parvalbumin immunocytochemistry: Localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity , 1989, The Journal of comparative neurology.

[192]  A. Parent,et al.  The occurrence of large acetylcholinesterase-containing neurons in human neostriatum as disclosed in normal and Alzheimer-diseased brains , 1984, Brain Research.

[193]  M. Celio,et al.  Parvalbumin in most gamma-aminobutyric acid-containing neurons of the rat cerebral cortex. , 1986, Science.

[194]  C D Marsden,et al.  Function of the Basal Ganglia as Revealed by Cognitive and Motor Disorders in Parkinson’s Disease , 1984, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[195]  T. Hökfelt,et al.  Immunohistochemical studies on monoamine-containing cell systems. , 1973, Brain research.

[196]  A. Beaudet,et al.  Serotonin axon terminals in the ventral tegmental area of the rat: fine structure and synaptic input to dopaminergic neurons , 1987, Brain Research.

[197]  S. Nakanishi,et al.  Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat , 1993, Neuroscience.

[198]  D. A. Bergstrom,et al.  Dopamine attenuates the effects of GABA on single unit activity in the Globus pallidus , 1984, Brain Research.

[199]  M. Arluison,et al.  High-resolution radioautographic study of the serotonin innervation of the rat corpus striatum after intraventricular administration of [3H]5-hydroxytryptamine , 1980, Neuroscience.

[200]  P. Davies,et al.  SELECTIVE LOSS OF CENTRAL CHOLINERGIC NEURONS IN ALZHEIMER'S DISEASE , 1976, The Lancet.

[201]  M. Carpenter,et al.  Interconnections and organization of pallidal and subthalamic nucleus neurons in the monkey , 1981, The Journal of comparative neurology.

[202]  A. Parent,et al.  Calbindin D-28k and choline acetyltransferase are expressed by different neuronal populations in pedunculopontine nucleus but not in nucleus basalis in squirrel monkeys , 1992, Brain Research.

[203]  J. Morrison,et al.  Organization and quantitative analysis of kainate receptor subunit GluR5-7 immunoreactivity in monkey hippocampus , 1993, Brain Research.

[204]  R. Ramsay,et al.  Mechanism of the neurotoxicity of MPTP , 1990, FEBS letters.

[205]  K. Fuxe,et al.  EVIDENCE FOR THE EXISTENCE OF MONOAMINE-CONTAINING NEURONS IN THE CENTRAL NERVOUS SYSTEM. I. DEMONSTRATION OF MONOAMINES IN THE CELL BODIES OF BRAIN STEM NEURONS. , 1964, Acta physiologica Scandinavica. Supplementum.

[206]  M. Harding,et al.  Putative amino acid sequence of chick calcium-binding protein deduced from a complementary DNA sequence. , 1985, Nucleic acids research.

[207]  A. Parent,et al.  Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: A PHA‐L study of subcortical projections , 1992, The Journal of comparative neurology.

[208]  L. Butcher,et al.  The pontomesencephalotegmental cholinergic system does not degenerate in Alzheimer's disease , 1989, Neuroscience Letters.

[209]  M. Somerville,et al.  Reduction of calbindin-28k mRNA levels in Alzheimer as compared to Huntington hippocampus. , 1993, Brain research. Molecular brain research.

[210]  S. Haber,et al.  Primate striatonigral projections: A comparison of the sensorimotor‐related striatum and the ventral striatum , 1994, The Journal of comparative neurology.

[211]  H. Dale,et al.  Release of acetylcholine at voluntary motor nerve endings , 1936, International anesthesiology clinics.

[212]  C. Geula,et al.  Human striatum: Chemoarchitecture of the caudate nucleus, putamen and ventral striatum in health and Alzheimer's disease , 1994, Neuroscience.

[213]  S. T. Kitai,et al.  The organization of divergent axonal projections from the midbrain raphe nuclei in the rat , 1986, The Journal of comparative neurology.

[214]  George Paxinos,et al.  Receptors in the Human Nervous System , 1991 .

[215]  J. Yelnik,et al.  Localization of nigrostriatal, nigrothalamic and nigrotectal neurons in ventricular coordinates in macaques , 1984, Neuroscience.

[216]  J. Kaas,et al.  Calbindin D-28K in the dopaminergic mesocortical projection of a monkey (Aotus trivirgatus) , 1993, Brain Research.

[217]  A. Björklund,et al.  Dopaminergic innervation of the globus pallidus by collaterals from the nigrostriatal pathway , 1979, Brain Research.

[218]  J. Donoghue,et al.  Neostriatal projections from individual cortical fields conform to histochemically distinct striatal compartments in the rat , 1986, Brain Research.

[219]  André Parent,et al.  Comparative neurobiology of the basal ganglia , 1986 .

[220]  H. Fibiger,et al.  Anatomical and electrophysiological identification of a projection from the mesencephalic raphe to the caudate-putamen in the rat , 1975, Brain Research.

[221]  M. Celio,et al.  Calbindin D-28k and parvalbumin in the rat nervous system , 1990, Neuroscience.

[222]  R. Moore,et al.  Serotonin neurons of the midbrain raphe: Ascending projections , 1978, The Journal of comparative neurology.

[223]  R. C. Collins,et al.  Metabolic effects of unilateral lesion of the substantia nigra , 1981, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[224]  H. Kimura,et al.  Choline acetyltransferase-containing neurons in rodent brain demonstrated by immunohistochemistry. , 1980, Science.

[225]  A. Parent,et al.  Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop , 1995, Brain Research Reviews.

[226]  G. Graveland,et al.  A Golgi study of the human neostriatum: Neurons and afferent fibers , 1985, The Journal of comparative neurology.

[227]  Hassler Rg,et al.  Types of synapses in the pallidum and their differential degeneration following lesions of pallidal afferents in squirrel monkey (Saimiri sciureus). , 1984 .

[228]  L. Descarries,et al.  Distribution of GABA‐immunoreactive neurons in the basal ganglia of the squirrel monkey (Saimiri sciureus) , 1987, The Journal of comparative neurology.

[229]  U. Meyer,et al.  Cholinergic projections from magnocellular nuclei of the basal forebrain to cortical areas in rats , 1980, Brain Research Reviews.

[230]  G. Koelle The histochemical localization of cholinesterases in the central nervous system of the rat , 1954, The Journal of comparative neurology.

[231]  A. Parent,et al.  Acetylcholinesterase-containing neurons in cat neostriatum: A morphological and quantitative analysis , 1980, Neuroscience Letters.

[232]  J. Saint-Cyr,et al.  Procedural learning and neostriatal dysfunction in man. , 1988, Brain : a journal of neurology.

[233]  A. Parent,et al.  The striatopallidal projection displays a high degree of anatomical specificity in the primate , 1992, Brain Research.

[234]  B. Berger,et al.  Tyrosine hydroxylase and methionine-enkephalin in the human mesencephalon Immunocytochemical localization and relationships , 1983, Journal of the Neurological Sciences.

[235]  S. Haber,et al.  Evidence for interconnections between the two segments of the globus pallidus in primates: a PHA-L anterograde tracing study , 1990, Brain Research.

[236]  R. Kötter,et al.  The limbic system: a review of its empirical foundation , 1992, Behavioural Brain Research.

[237]  Reid Hunt,et al.  ON THE RELATION BETWEEN THE TOXICITY AND CHEMICAL CONSTITUTION OF A NUMBER OF DERIVATIVES OF CHOLINE AND ANALOGOUS COMPOUNDS , 1909 .

[238]  A. Parent Extrinsic connections of the basal ganglia , 1990, Trends in Neurosciences.

[239]  A. Teelken,et al.  Glutamine, glutamate and gaba in the central nervous system Edited by: L. Hertz, E. Kvamme, E.G. McGeer and A. Schousboe. Alan R. Liss, Inc. New York, 1984. Series: Neurology and Neurobiology. pp. 720, Figs and Tables, £ 66.00. ISBN 0-8451-2706-3 , 1986, Clinical Neurology and Neurosurgery.

[240]  S. Haber,et al.  Mechanisms of striatal pattern formation: conservation of mammalian compartmentalization. , 1990, Brain research. Developmental brain research.

[241]  A. Charara,et al.  Brainstem dopaminergic, cholinergic and serotoninergic afferents to the pallidum in the squirrel monkey , 1994, Brain Research.

[242]  S. Haber,et al.  Correlation between met-enkephalin and substance P immunoreactivity in the primate globus pallidus , 1981, Neuroscience.

[243]  A. Parent,et al.  Differential dopaminergic innervation of the two pallidal segments in the squirrel monkey (Saimiri sciureus) , 1987, Brain Research.

[244]  P. Levitt,et al.  A monoclonal antibody to limbic system neurons. , 1984, Science.

[245]  A. Parent,et al.  Anatomical aspects of information processing in primate basal ganglia , 1993, Trends in Neurosciences.

[246]  G. Paxinos The Rat nervous system , 1985 .

[247]  C. Köhler,et al.  Golgi‐like immunoperoxidase staining of dopamine neurons in the reticular formation of the rat brainstem using antibody to tyrosine‐hydroxylase , 1984, The Journal of comparative neurology.

[248]  J. Timothy Greenamyre,et al.  Advances in Neurology, vol 53, Parkinson's Disease: Anatomy, Pathology, and Therapy , 1991 .

[249]  P. Levitt,et al.  Isolation, biochemical characterization and ultrastructural analysis of the limbic system-associated membrane protein (LAMP), a protein expressed by neurons comprising functional neural circuits , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[250]  J. Penney,et al.  Glutamate Receptor Binding Sites in MPTP-Treated Mice , 1993, Experimental Neurology.

[251]  C. Geula,et al.  Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus , 1992, The Journal of comparative neurology.

[252]  L. Brown,et al.  Apomorphine increases glucose utilization in the substantia nigra, subthalamic nucleus and corpus striatum of rat , 1978, Brain Research.

[253]  A. Parent,et al.  Distribution of somatostatin immunoreactivity in the forebrain of the squirrel monkey: Basal ganglia and amygdala , 1992, Neuroscience.

[254]  L. Descarries,et al.  Distribution and Morphological Characteristics of Dopamine‐Immunoreactive Neurons in the Midbrain of the Squirrel Monkey (Saimiri sciureus) , 1988, The Journal of comparative neurology.

[255]  M. Carpenter,et al.  Monoamine-containing cell bodies in the squirrel monkey brain. , 1974, The American journal of anatomy.

[256]  T. Pasik,et al.  A Golgi study of neuronal types in the neostriatum of monkeys , 1976, Brain Research.

[257]  P. Molinoff,et al.  Quantitative autoradiographic localization of the D1 and D2 subtypes of dopamine receptors in rat brain , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[258]  R. Kurlan,et al.  Antiparkinsonian effects of remacemide hydrochloride, a glutamate antagonist, in rodent and primate models of Parkinson's disease , 1994, Annals of neurology.

[259]  P. Levitt,et al.  Heterogeneous distribution of the limbic system-associated membrane protein in the caudate nucleus and substantia nigra of the cat , 1991, Neuroscience.

[260]  A. Parent,et al.  Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry , 1995, Brain Research Reviews.

[261]  P. Strange Interesting times for dopamine receptors , 1991, Trends in Neurosciences.

[262]  Reid Hunt,et al.  On the physiological action of certain cholin derivatives and new methods for detecting cholin. , 1906 .

[263]  P. Bradley,et al.  Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine , 1986, Neuropharmacology.

[264]  A. C. Cuello,et al.  Cholinergic projections from the midbrain and pons to the thalamus in the rat, identified by combined retrograde tracing and choline acetyltransferase immunohistochemistry , 1985, Brain Research.

[265]  J. Langston,et al.  Pargyline prevents MPTP-induced parkinsonism in primates. , 1984, Science.

[266]  A. Parent,et al.  Atlas of the distribution of monoamine‐containing nerve cell bodies in the brain stem of the cat , 1978, The Journal of comparative neurology.

[267]  Finn A. GENnS Distribution of Acetyl Cholinesterase in the Hippocampal Region of the Guinea Pig , 1972 .

[268]  D. Price,et al.  Injury of nigral neurons exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: A tyrosine hydroxylase immunocytochemical study in monkey , 1986, Neuroscience.

[269]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[270]  Sanford P. Markey,et al.  Chronic parkinsonism secondary to intravenous injection of meperidine analogues , 1979, Psychiatry Research.

[271]  C. Gerfen,et al.  D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. , 1990, Science.

[272]  L. Descarries,et al.  Serotonin innervation in adult rat neostriatum. I. Quantified regional distribution , 1987, Brain Research.

[273]  C. Rebert,et al.  Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey , 1984, Brain Research.

[274]  D. Jacobowitz,et al.  A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[275]  T. F. Freund,et al.  Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines , 1984, Neuroscience.

[276]  S. Haber,et al.  Topographic organization of the ventral striatal efferent projections in the rhesus monkey: An anterograde tracing study , 1990, The Journal of comparative neurology.

[277]  B. A. Brooks,et al.  Midbrain Dopaminergic Cell Loss in Parkinson's Disease and MPTP‐Induced Parkinsonism: Sparing of Calbindin‐D25k—Containing Cells a , 1992, Annals of the New York Academy of Sciences.

[278]  R. Ferrante,et al.  Neuropathological Classification of Huntington's Disease , 1985, Journal of neuropathology and experimental neurology.

[279]  J. Palacios,et al.  Localisation by autoradiography of neuronal 5-HT3 receptors in the mouse CNS. , 1988, European journal of pharmacology.

[280]  E. Richfield,et al.  Comparative distribution of dopamine D‐1 and D‐2 receptors in the basal ganglia of turtles, pigeons, rats, cats, and monkeys , 1987, The Journal of comparative neurology.

[281]  J. Price,et al.  A description of the amygdaloid complex in the rat and cat with observations on intra‐amygdaloid axonal connections , 1978, The Journal of comparative neurology.

[282]  Gavin Kilpatrick,et al.  Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding , 1987, Nature.

[283]  T Pasik,et al.  GABAergic elements in the neuronal circuits of the monkey neostriatum: A light and electron microscopic immunocytochemical study , 1988, The Journal of comparative neurology.

[284]  J. Pearson,et al.  Tyrosine hydroxylase immunohistochemistry in human brain , 1979, Brain Research.

[285]  D. Garver,et al.  Monoamine distribution in primate brain. I. Catecholamine‐containing perikarya in the brain stem of Macaca speciosa , 1975, The Journal of comparative neurology.

[286]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.

[287]  M. Martres,et al.  Widespread distribution of brain dopamine receptors evidenced with [125I]iodosulpride, a highly selective ligand. , 1985, Science.

[288]  S. Heinemann,et al.  Molecular cloning and functional expression of glutamate receptor subunit genes. , 1990, Science.

[289]  B. Everitt,et al.  The organisation of catecholamine-containing neurons in the brain of the rhesus monkey (Macaca mulatta). , 1981, Journal of anatomy.

[290]  C. Markham,et al.  Selective loss of subpopulations of ventral mesencephalic dopaminergic neurons in the monkey following exposure to MPTP , 1987, Brain Research.

[291]  R. Robertson,et al.  MPTP-Induced Parkinsonism in the Monkey: Neurochemical Pathology, Complications of Treatment and Pathophysiological Mechanisms , 1987, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[292]  M. Kuhar The mismatch problem in receptor mapping studies , 1985, Trends in Neurosciences.

[293]  A. Björklund,et al.  Prefrontal Corticostriatal Afferents Maintain Increased Enkephalin Gene Expression in the Dopamine‐denervated Rat Striatum , 1994, The European journal of neuroscience.

[294]  C. P. Vandermaelen,et al.  Excitation of caudate-putamen neurons following stimulation of the dorsal raphe nucleus in the rat , 1979, Brain Research.

[295]  B. Jacobs,et al.  Structure and function of the brain serotonin system. , 1992, Physiological reviews.

[296]  D. Riche,et al.  Stable parkinsonian syndrome and uneven loss of striatal dopamine fibres following chronic MPTP administration in baboons , 1993, Neuroscience.

[297]  J. Wu,et al.  Glutamate decarboxylase‐immunoreactive structures in the rat neostriatum: A correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry , 1985, The Journal of comparative neurology.

[298]  P. Davies,et al.  REGIONAL DISTRIBUTION OF MONOAMINES AND THEIR METABOLITES IN THE HUMAN BRAIN , 1978, Journal of neurochemistry.

[299]  T. Sourkes,et al.  INFLUENCE OF THE SUBSTANTIA NIGRA ON THE CATECHOLAMINE CONTENT OF THE STRIATUM. , 1965, Brain : a journal of neurology.

[300]  R. Katzman.,et al.  Catecholaminergic innervation of the subthalamic nucleus: evidence for a rostral continuation of the A9 (substantia nigra) dopaminergic cell group , 1979, Brain Research.

[301]  A. Young,et al.  A polymorphic DNA marker genetically linked to Huntington's disease , 1983, Nature.

[302]  J. Hubbard,et al.  Fluorescence histochemistry of monoamine‐containing cell bodies in the brain stem of the squirrel monkey (Saimiri sciureus). IV. An atlas , 1973, The Journal of comparative neurology.

[303]  J. Deniau,et al.  Disinhibition as a basic process in the expression of striatal functions , 1990, Trends in Neurosciences.

[304]  A. Parent,et al.  Effects of Dopamine Denervation on Striatal Peptide Expression in Parkinsonian Monkeys , 1991, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[305]  C. Gerfen,et al.  The neostriatal mosaic: compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[306]  J Patrick,et al.  Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: A hybridization histochemical study in the rat , 1989, The Journal of comparative neurology.

[307]  C. Marsden,et al.  The D-1 dopamine receptor partial agonist, CY 208-243, exhibits antiparkinsonian activity in the MPTP-treated marmoset. , 1988, European journal of pharmacology.

[308]  G. Percheron,et al.  A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striato‐pallidal complex , 1984, The Journal of comparative neurology.

[309]  T. Hattori,et al.  Bilaterally situated dorsal raphe cell bodies have only unilateral forebrain projections in rat , 1980, Brain Research.

[310]  S. Kitai,et al.  Serotonergic excitation from dorsal raphe stimulation recorded intracellulary from rat caudate-putamen , 1982, Brain Research.

[311]  Paul D. MacLean,et al.  An Explanation of Behavior. (Book Reviews: The Triune Brain in Evolution. Role in Paleocerebral Functions.) , 1990 .

[312]  F. Plum Handbook of Physiology. , 1960 .

[313]  J. Fallon,et al.  Catecholamine innervation of the basal forebrain IV. Topography of the dopamine projection to the basal forebrain and neostriatum , 1978, The Journal of comparative neurology.

[314]  M. Filion Effects of interruption of the nigrostriatal pathway and of dopaminergic agents on the spontaneous activity of globus pallidus neurons in the awake monkey , 1979, Brain Research.

[315]  E. Azmitia,et al.  An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat , 1978, The Journal of comparative neurology.

[316]  M. Geffard,et al.  Antisera against small neurotransmitter-like molecules , 1985, Neurochemistry International.

[317]  W. Gibb,et al.  Melanin, tyrosine hydroxylase, calbindin and substance P in the human midbrain and substantia nigra in relation to nigrostriatal projections and differential neuronal susceptibility in Parkinson's disease , 1992, Brain Research.

[318]  J. Palacios,et al.  Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors , 1985, Brain Research.