Logic and Its Applications

Homotopy Type Theory is a new, homotopical interpretation of constructive type theory. It forms the basis of the recently proposed Univalent Foundations of Mathematics program. Combined with a computational proof assistant, and including a new foundational axiom – the Univalence Axiom – this program has the potential to shift the theoretical foundations of mathematics and computer science, and to affect the practice of working scientists. This talk will survey the field and report on some of the recent developments.

[1]  Greg Restall,et al.  Relevant and substructural logics , 2006, Logic and the Modalities in the Twentieth Century.

[2]  Edwin D. Mares,et al.  Relevant logic and the theory of information , 1996, Synthese.

[3]  Chris Cornelis,et al.  ON THE PROPERTIES OF A GENERALIZED CLASS OF T-NORMS IN INTERVAL-VALUED FUZZY LOGICS , 2006 .

[4]  Chris Cornelis,et al.  Representability in Interval-Valued Fuzzy Set Theory , 2007, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[5]  Juan Luis Castro,et al.  On consequence in approximate reasoning , 1994, J. Appl. Non Class. Logics.

[6]  D. J. Shoesmith,et al.  Multiple-Conclusion Logic , 1978 .

[7]  Benjamín R. C. Bedregal,et al.  On interval fuzzy S-implications , 2010, Inf. Sci..

[8]  Mihir K. Chakraborty,et al.  Graded consequence revisited , 2010, Fuzzy Sets Syst..

[9]  Benjamín R. C. Bedregal,et al.  Interval representations, Łukasiewicz implicators and Smets-Magrez axioms , 2013, Inf. Sci..

[10]  Benjamín R. C. Bedregal,et al.  The best interval representations of t-norms and automorphisms , 2006, Fuzzy Sets Syst..

[11]  Etienne E. Kerre,et al.  Classes Of Intuitionistic Fuzzy T-Norms Satisfying The Residuation Principle , 2003, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[12]  Paul Strauss,et al.  Foundations Of The Theory Of Signs , 2016 .

[13]  Mihir K. Chakraborty,et al.  Many-Valued Logics, Fuzzy Logics and Graded Consequence: A Comparative Appraisal , 2013, ICLA.

[14]  Yongming Li,et al.  Algebraic structures of interval-valued fuzzy (S, N)-implications , 2012, Int. J. Approx. Reason..

[15]  Richard Routley,et al.  The Semantics of First Degree Entailment , 1972 .

[16]  Kit Fine,et al.  Models for entailment , 1974, J. Philos. Log..

[17]  Mihir K. Chakraborty,et al.  Graded Consequence with Fuzzy Set of Premises , 2014, Fundam. Informaticae.

[18]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[19]  P. Garcia,et al.  On implicative closure operators in approximate reasoning , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[20]  Gerhard Gentzen,et al.  Investigations into Logical Deduction , 1970 .

[21]  Chris Cornelis,et al.  Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application , 2004, Int. J. Approx. Reason..

[22]  Giangiacomo Gerla,et al.  Fuzzy Logic: Mathematical Tools for Approximate Reasoning , 2001 .

[23]  Edwin D. Mares,et al.  “Four-Valued” Semantics for the Relevant Logic R , 2004, J. Philos. Log..

[24]  R. Meyer,et al.  The semantics of entailment — III , 1973 .

[25]  Alasdair Urquhart,et al.  Semantics for relevant logics , 1972, Journal of Symbolic Logic.

[26]  C. Alcalde,et al.  A constructive method for the definition of interval-valued fuzzy implication operators , 2005, Fuzzy Sets Syst..

[27]  W. Wells Defining relevance , 2000, Genome Biology.

[28]  Mihir K. Chakraborty,et al.  Graded Consequence: Further Studies , 1995, J. Appl. Non Class. Logics.

[29]  Mihir K. Chakraborty,et al.  Graded Consequence and Some Metalogical Notions Generalized , 1997, Fundam. Informaticae.

[30]  Richard Routley,et al.  The Semantics of Entailment. , 1977 .