The Lagrange-Galerkin Method for the Two-dimensional Shallow Water Equations on Adaptive Grids

The article of record as published may be located at http://dx.doi.org/10.1002/1097-0363(20000730)33:6 3.0.CO;2-1

[1]  M. Taylor The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .

[2]  A. Priestley,et al.  Exact projections and the Lagrange-Galerkin method: a realistic alternative to quadrature , 1994 .

[3]  J. Donea A Taylor–Galerkin method for convective transport problems , 1983 .

[4]  Rodolfo Bermejo,et al.  A Galerkin-characteristic algorithm for transport-diffusion equations , 1995 .

[5]  J. Z. Zhu,et al.  The finite element method , 1977 .

[6]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[7]  Hong Ma,et al.  A spectral element basin model for the shallow water equations , 1993 .

[8]  B. A. WingatezAbstract Fekete Collocation Points for Triangular Spectral Elements , 1998 .

[9]  Richard E. Ewing,et al.  A Family of Eulerian-Lagrangian Localized Adjoint Methods for Multi-dimensional Advection-Reaction Equations , 1999 .

[10]  Richard W. Healy,et al.  Solution of the advection-dispersion equation in two dimensions by a finite-volume Eulerian-Lagrangian localized adjoint method , 1998 .

[11]  F. Giraldo Lagrange-Galerkin Methods on Spherical Geodesic Grids , 1997 .

[12]  Philip John Binning,et al.  A Finite Volume Eulerian‐Lagrangian Localized Adjoint Method for Solution of the Contaminant Transport Equations in Two‐Dimensional Multiphase flow Systems , 1996 .

[13]  John P. Boyd,et al.  Equatorial Solitary Waves. Part 3: Westward-Traveling Modons , 1985 .

[14]  J. P. Benque,et al.  A new finite element method for Navier-Stokes equations coupled with a temperature equation , 1982 .

[15]  O. C. Zienkiewicz,et al.  A split‐characteristic based finite element model for the shallow water equations , 1995 .

[16]  J. Boyd,et al.  A staggered spectral element model with application to the oceanic shallow , 1995 .

[17]  Richard E. Ewing,et al.  Eulerian–Lagrangian localized adjoint methods for reactive transport with biodegradation , 1995 .

[18]  T. F. Russell,et al.  An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation , 1990 .

[19]  Vahid Nassehi,et al.  A NEW TWO‐DIMENSIONAL FINITE ELEMENT MODEL FOR THE SHALLOW WATER EQUATIONS USING A LAGRANGIAN FRAMEWORK CONSTRUCTED ALONG FLUID PARTICLE TRAJECTORIES , 1996 .

[20]  Francis X. Giraldo,et al.  The Lagrange-Galerkin Spectral Element Method on Unstructured Quadrilateral Grids , 1998 .

[21]  Francis X. Giraldo,et al.  Stability Analysis for Eulerian and Semi-Lagrangian Finite Element Formulation of the Advection-Diffusion Equation , 1999 .

[22]  I. G. Currie Fundamental mechanics of fluids , 1974 .

[23]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[24]  John P. Boyd,et al.  Equatorial Solitary Waves. Part I: Rossby Solitons , 1980 .