Dynamics near the filler surface in natural rubber-silica nanocomposites

Abstract We study the effect of in situ synthesized 10 nm silica nanoparticles on the glass transition and dynamics of natural rubber networks using differential scanning calorimetry, broadband dielectric relaxation spectroscopy and thermally stimulated depolarization currents. Even in the absence of specific polymer-filler interactions, polymer segments within a few nanometers of the filler particles exhibit relaxation times up to 2–3 orders of magnitude slower and reduced heat capacity increment at the glass transition compared to bulk natural rubber. These effects are only observed when the nanoparticles are uniformly distributed in the polymer matrix.

[1]  J. Douglas,et al.  Amorphous solidification in polymer-platelet nanocomposites. , 2002, Physical review letters.

[2]  J. Chauvin,et al.  Reinforcement of natural rubber: use of in situ generated silicas and nanofibres of sepiolite , 2005 .

[3]  L. Bokobza,et al.  Reinforcement of poly(dimethylsiloxane) by sol-gel in situ generated silica and titania particles , 2010 .

[4]  L. Matějka Reinforcement of crosslinked rubbery epoxies by in-situ formed silica , 2000 .

[5]  H. Ade,et al.  Influence of sample preparation and processing on observed glass transition temperatures of polymer nanocomposites , 2007 .

[6]  C. Schick,et al.  The amount of immobilized polymer in PMMA SiO$_{2}$ nanocomposites determined from calorimetric data , 2007 .

[7]  Silvina Cerveny,et al.  Universal features of water dynamics in solutions of hydrophilic polymers, biopolymers, and small glass-forming materials. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  L. Brožová,et al.  Molecular dynamics in nanostructured polyimide–silica hybrid materials and their thermal stability , 2002 .

[9]  B. Wunderlich Reversible crystallization and the rigid-amorphous phase in semicrystalline macromolecules , 2003 .

[10]  G. Adam,et al.  On the Temperature Dependence of Cooperative Relaxation Properties in Glass‐Forming Liquids , 1965 .

[11]  A. Okada,et al.  Twenty Years of Polymer‐Clay Nanocomposites , 2006 .

[12]  Polycarpos Pissis,et al.  Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites , 2005 .

[13]  Ming Liu,et al.  Immobilized polymer layers on spherical nanoparticles , 2010 .

[14]  F. Kremer,et al.  Broad-band dielectric spectroscopy on the molecular dynamics of bulk and adsorbed poly(dimethylsiloxane) , 1993 .

[15]  M. Rackaitis,et al.  Further Consideration of Viscoelastic Two Glass Transition Behavior of Nanoparticle-Filled Polymers , 2011 .

[16]  G. Floudas,et al.  Dynamics of Natural Rubber as a Function of Frequency, Temperature, and Pressure. A Dielectric Spectroscopy Investigation , 2010 .

[17]  I. McEwen,et al.  The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller , 2003 .

[18]  George Tsagaropoulos,et al.  Dynamic Mechanical Study of the Factors Affecting the Two Glass Transition Behavior of Filled Polymers. Similarities and Differences with Random Ionomers , 1995 .

[19]  B. Bresson,et al.  Synthesis, structure and morphology of poly(dimethylsiloxane) networks filled with in situ generated silica particles , 2005 .

[20]  T. Kotaka,et al.  Solution cross-linked networks. III: Dielectric normal mode process of guest polyisoprene in natural rubber networks , 1987 .

[21]  H. Vogel,et al.  Das Temperaturabhangigkeitsgesetz der Viskositat von Flussigkeiten , 1921 .

[22]  G. Kickelbick,et al.  Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale , 2003 .

[23]  L. Schadler,et al.  Glass-transition temperature behavior of alumina/PMMA nanocomposites , 2004 .

[24]  Li-Min Wang,et al.  Confined viscous liquids: Interfacial versus finite size effects , 2007 .

[25]  L. Bokobza The Reinforcement of Elastomeric Networks by Fillers , 2004 .

[26]  J. Fontanella,et al.  Evolution of the Dynamics in 1,4-Polyisoprene from a Nearly Constant Loss to a Johari−Goldstein β-Relaxation to the α-Relaxation , 2004 .

[27]  Liliane Bokobza,et al.  MULTIWALL CARBON NANOTUBE ELASTOMERIC COMPOSITES: A REVIEW , 2007 .

[28]  G. Tammann,et al.  Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten , 1926 .

[29]  H. Spiess,et al.  2H NMR study of molecular motions in polydimethylsiloxane and its mixtures with aerosils , 1991 .

[30]  Yohei Miwa,et al.  Detection of the Direct Effect of Clay on Polymer Dynamics: The Case of Spin-Labeled Poly(methyl acrylate)/Clay Nanocomposites Studied by ESR, XRD, and DSC , 2006 .

[31]  P. Pissis,et al.  Dielectric studies of segmental dynamics in poly(dimethylsiloxane)/titania nanocomposites , 2011 .

[32]  P. Pissis,et al.  Comparative studies on effects of silica and titania nanoparticles on crystallization and complex segmental dynamics in poly(dimethylsiloxane) , 2010 .

[33]  M. Moniruzzaman,et al.  Polymer Nanocomposites Containing Carbon Nanotubes , 2006 .

[34]  P. Pissis,et al.  Modified chain dynamics in poly(dimethylsiloxane)/silica nanocomposites , 2006 .

[35]  C. Roland,et al.  GLASS TRANSITION AND INTERFACIAL SEGMENTAL DYNAMICS IN POLYMER-PARTICLE COMPOSITES , 2008 .

[36]  M. Landry,et al.  Poly(vinyl acetate)/silica-filled materials: material properties of in situ vs fumed silica particles , 1993 .

[37]  Sanat K. Kumar,et al.  Nanocomposites: structure, phase behavior, and properties. , 2010, Annual review of chemical and biomolecular engineering.

[38]  G. Fulcher,et al.  ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES , 1925 .

[39]  V. Privalko,et al.  Glass transition in filled polymer systems , 1972 .

[40]  L. Bokobza,et al.  Reinforcement of natural rubber , 2002 .

[41]  C. Angell The Glass Transition: Relaxation Dynamics in Liquids and Disordered Materials , 2002 .

[42]  D. Long,et al.  Evidence for the Shift of the Glass Transition near the Particles in Silica-Filled Elastomers , 2002 .

[43]  Markus J. Buehler,et al.  Current issues in research on structure–property relationships in polymer nanocomposites , 2010 .

[44]  M. Kryszewski Thermally stimulated relaxation in solids, topics in applied physics: Edited by P. Bräunlich, Springer Verlag, Berlin, 1979, xii + 333 pp., price 98 DM , 1982 .

[45]  R. Bogoslovov,et al.  Effect of Silica Nanoparticles on the Local Segmental Dynamics in Poly(vinyl acetate) , 2008 .

[46]  Rodney D. Priestley,et al.  Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. , 2007, Nature materials.

[47]  J. E. Mark Ceramic‐reinforced polymers and polymer‐modified ceramics , 1996 .