Study on the Global Property of the Smooth Chua's System

In this paper, we first give a constructive proof for the existence of globally exponential attractive set of Chua's system with a smooth nonlinear function. Then, we derive a series of simple algebraic sufficient conditions under which two same type of smooth Chua's systems are globally exponentially synchronized using simple linear feedback controls. Also, as the special cases of chaos synchronization, we consider global tracking and global exponentially tracking of periodic motions, as well as global stabilization and globally exponential stabilization of equilibrium points in smooth Chua's systems. We construct a series of simple, easily applicable feedback control laws. Computer simulation results are presented to verify the theoretical predictions.

[1]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[2]  L. Chua,et al.  A universal circuit for studying and generating chaos. I. Routes to chaos , 1993 .

[3]  Leon O. Chua,et al.  Chua's Circuit: an Overview Ten Years Later , 1994, J. Circuits Syst. Comput..

[4]  L. Chua,et al.  A universal circuit for studying chaotic phenomena , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[5]  Pei Yu,et al.  Study of Globally Exponential Synchronization for the Family of RÖssler Systems , 2006, Int. J. Bifurc. Chaos.

[6]  Chai Wah Wu,et al.  Chua's oscillator: A compendium of chaotic phenomena , 1994 .

[7]  Rabinder N Madan,et al.  Chua's Circuit: A Paradigm for Chaos , 1993, Chua's Circuit.

[8]  Pei Yu,et al.  Analysis on the Globally Exponent Synchronization of Chua's Circuit Using Absolute Stability Theory , 2005, Int. J. Bifurc. Chaos.

[9]  Guanrong Chen,et al.  Chaos Synchronization of General Lur'e Systems via Time-Delay Feedback Control , 2003, Int. J. Bifurc. Chaos.

[10]  Guanrong Chen,et al.  On global synchronization of chaotic systems , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[11]  G. Leonov,et al.  Attraktorlokalisierung des Lorenz-Systems , 1987 .

[12]  L. Chua The Genesis of Chua's circuit , 1992 .

[13]  L. Chua,et al.  A universal circuit for studying and generating chaos. II. Strange attractors , 1993 .

[14]  Takashi Matsumoto,et al.  A chaotic attractor from Chua's circuit , 1984 .

[15]  X. Liao,et al.  Absolute Stability of Nonlinear Control Systems , 2008 .

[16]  J. Suykens,et al.  Master-Slave Synchronization of Lur'e Systems , 1997 .

[17]  Tambe,et al.  Driving systems with chaotic signals. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[18]  Guanrong Chen,et al.  A simple global synchronization criterion for coupled chaotic systems , 2003 .

[19]  Pei Yu,et al.  Chaos control for the family of Rössler systems using feedback controllers , 2006 .

[20]  Tomasz Kapitaniak Routes to Chaos , 1998 .

[21]  Guanrong Chen,et al.  On Global Exponential Synchronization of Chua Circuits , 2005, Int. J. Bifurc. Chaos.

[22]  Pei Yu,et al.  Globally Attractive and Positive Invariant Set of the Lorenz System , 2006, Int. J. Bifurc. Chaos.

[23]  Jiang Guo-pin The Synchronization of Chua's Circuits Based on Unidirectionally Coupled Method , 2000 .

[24]  L. Chua,et al.  The double scroll family , 1986 .

[25]  L. Chua,et al.  Absolute Stability Theory and the Synchronization Problem , 1997 .

[26]  L. Chua,et al.  A UNIFIED FRAMEWORK FOR SYNCHRONIZATION AND CONTROL OF DYNAMICAL SYSTEMS , 1994 .

[27]  L. O. Chua,et al.  The double scroll family. I: Rigorous of chaos. II: Rigorous analysis of bifurcation phenomena , 1986 .

[28]  Wei Xing Zheng,et al.  Global chaos synchronization with channel time-delay , 2004 .

[29]  Leon O. Chua,et al.  Chaos Synchronization in Chua's Circuit , 1993, J. Circuits Syst. Comput..

[30]  Guanrong Chen,et al.  On feedback-controlled synchronization of chaotic systems , 2003, Int. J. Syst. Sci..

[31]  Leon O. Chua,et al.  A zoo of strange attractors from the canonical Chua's circuits , 1992, [1992] Proceedings of the 35th Midwest Symposium on Circuits and Systems.

[32]  I. H. Mufti,et al.  Absolute stability of nonlinear control systems , 1966 .

[33]  Pei Yu,et al.  New Estimations for Globally Attractive and Positive Invariant Set of the Family of the Lorenz Systems , 2006, Int. J. Bifurc. Chaos.

[34]  Akio Tsuneda,et al.  A Gallery of attractors from Smooth Chua's equation , 2005, Int. J. Bifurc. Chaos.