Fabrication of High-Performance CsPbBr3 Perovskite Quantum Dots/Polymer Composites via Photopolymerization: Implications for Luminescent Displays and Lighting

[1]  William W. Yu,et al.  Efficient and Stable Mg2+-Doped CsPbCl3 Nanocrystals for Violet LEDs. , 2021, The journal of physical chemistry letters.

[2]  F. Dumur,et al.  New hybrid perovskites/polymer composites for the photodegradation of organic dyes , 2021, European Polymer Journal.

[3]  G. Patriarche,et al.  Spray-Drying Polymer Encapsulation of CsPbBr3 Perovskite Nanocrystals with Enhanced Photostability for LED Downconverters , 2021, ACS Applied Nano Materials.

[4]  Fei Li,et al.  One‐Step Polymeric Melt Encapsulation Method to Prepare CsPbBr3 Perovskite Quantum Dots/Polymethyl Methacrylate Composite with High Performance , 2021, Advanced Functional Materials.

[5]  Chun-Chieh Chang,et al.  All-inorganic perovskite quantum dot light-emitting memories , 2020, Nature Communications.

[6]  Hamid M. Ghaithan,et al.  Ultra-Stable Polycrystalline CsPbBr3 Perovskite–Polymer Composite Thin Disk for Light-Emitting Applications , 2020, Nanomaterials.

[7]  T. Ding,et al.  Triplet Energy Transfer from Perovskite Nanocrystals Mediated by Electron Transfer. , 2020, Journal of the American Chemical Society.

[8]  Yichun Liu,et al.  Thermal polymerization synthesis of CsPbBr3 perovskite-quantum-dots@copolymer composite: Towards long-term stability and optical phosphor application , 2020 .

[9]  S. Nie,et al.  Efficient and stable thin-film luminescent solar concentrators enable by near-infrared emission perovskite nanocrystals. , 2020, Angewandte Chemie.

[10]  R. Xie,et al.  A Facile Synthesis of Water‐Resistant CsPbBr3 Perovskite Quantum Dots Loaded Poly(methyl methacrylate) Composite Microspheres Based on In Situ Polymerization , 2019, Advanced Optical Materials.

[11]  B. Pelaz,et al.  Aqueous stable luminescent perovskite-polymer composites , 2019, Applied Materials Today.

[12]  L. Manna,et al.  Investigation into the Photoluminescence Red Shift in Cesium Lead Bromide Nanocrystal Superlattices , 2019, The journal of physical chemistry letters.

[13]  Z. Xia,et al.  Postsynthetic Surface Trap Removal of CsPbX3 (X = Cl, Br, or I) Quantum Dots via a ZnX2/Hexane Solution toward an Enhanced Luminescence Quantum Yield , 2018, Chemistry of Materials.

[14]  Xin Gao,et al.  Ultraviolet light induced degradation of luminescence in CsPbBr3 perovskite nanocrystals , 2018, Materials Research Bulletin.

[15]  Zhi‐Kuang Tan,et al.  Perovskite‐Initiated Photopolymerization for Singly Dispersed Luminescent Nanocomposites , 2018, Advanced materials.

[16]  Aziz Genç,et al.  Polarized emission from CsPbBr3 nanowire embedded-electrospun PU fibers , 2018, Nanotechnology.

[17]  Jiuyang Zhang,et al.  Highly Stable and Luminescent Perovskite-Polymer Composites from a Convenient and Universal Strategy. , 2018, ACS applied materials & interfaces.

[18]  Takashi Minemoto,et al.  Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield. , 2017, ACS nano.

[19]  J. Zhang,et al.  Lead Halide Perovskite Nanocrystals: Stability, Surface Passivation, and Structural Control , 2017 .

[20]  R. Friend,et al.  Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size. , 2017, ACS nano.

[21]  Noah D Bronstein,et al.  Essentially Trap-Free CsPbBr3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment. , 2017, Journal of the American Chemical Society.

[22]  Yitong Dong,et al.  Photoinduced Anion Exchange in Cesium Lead Halide Perovskite Nanocrystals. , 2017, Journal of the American Chemical Society.

[23]  Bo Wang,et al.  Morphology Evolution and Degradation of CsPbBr3 Nanocrystals under Blue Light-Emitting Diode Illumination. , 2017, ACS applied materials & interfaces.

[24]  F. Dumur,et al.  Perovskites as new radical photoinitiators for radical and cationic polymerizations , 2016 .

[25]  M. Al-Marri,et al.  Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application , 2016, Science China Materials.

[26]  Ho Won Jang,et al.  Organolead Halide Perovskites for Low Operating Voltage Multilevel Resistive Switching , 2016, Advanced materials.

[27]  H. Zeng,et al.  CsPbX3 Quantum Dots for Lighting and Displays: Room‐Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light‐Emitting Diodes , 2016 .

[28]  Richard H. Friend,et al.  Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes , 2015, Science.

[29]  H. Zeng,et al.  Quantum Dot Light‐Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3) , 2015, Advanced materials.

[30]  Tianquan Lian,et al.  Ultrafast Interfacial Electron and Hole Transfer from CsPbBr3 Perovskite Quantum Dots. , 2015, Journal of the American Chemical Society.

[31]  Yang Yang,et al.  Under the spotlight: The organic–inorganic hybrid halide perovskite for optoelectronic applications , 2015 .

[32]  C. Brabec,et al.  Detection of X-ray photons by solution-processed lead halide perovskites , 2015, Nature Photonics.

[33]  F. Dumur,et al.  Design of Novel Photoinitiators for Radical and Cationic Photopolymerizations under Near UV and Visible LEDs (385, 395, and 405 nm). , 2014 .

[34]  X. Allonas,et al.  Tailoring of organic dyes with oxidoreductive compounds to obtain photocyclic radical generator systems exhibiting photocatalytic behavior , 2014, Beilstein journal of organic chemistry.

[35]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[36]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[37]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[38]  F. Dumur,et al.  Polyaromatic Structures as Organo-Photoinitiator Catalysts for Efficient Visible Light Induced Dual Radical/Cationic Photopolymerization and Interpenetrated Polymer Networks Synthesis , 2012 .

[39]  Jean-Pierre Fouassier,et al.  Green Bulb Light Source Induced Epoxy Cationic Polymerization under Air Using Tris(2,2′-bipyridine)ruthenium(II) and Silyl Radicals , 2010 .

[40]  B. Graff,et al.  Comparative reactivity of aminyl and aminoalkyl radicals , 2007 .

[41]  J. Crivello,et al.  Development of polymeric photosensitizers for photoinitiated cationic polymerization , 2001 .

[42]  M. Matsuda,et al.  Flash Photolysis Study for Substituent and Solvent Effects on Spin-trapping Rates of Phenylthiyl Radicals with Nitrones , 1984 .