Numerical schemes for computing discontinuous solutions of the Degasperis–Procesi equation

Recent work (COCLITE, G. M. & KARLSEN, K. H. (2006) On the well-posedness of the Degasperis-Procesi equation. J. Funct. Anal., 233, 60-91) has shown that the Degasperis-Procesi equation is well-posed in the class of (discontinuous) entropy solutions. In the present paper, we construct numerical schemes and prove that they converge to entropy solutions. Additionally, we provide several numerical examples accentuating that discontinuous (shock) solutions form independently of the smoothness of the initial data. Our focus on discontinuous solutions contrasts notably with the existing literature on the Degasperis-Procesi equation, which seems to emphasize similarities with the Camassa-Holm equation (bi-Hamiltonian structure, integrability, peakon solutions and H 1 as the relevant functional space).

[1]  H. Holden,et al.  Front Tracking for Hyperbolic Conservation Laws , 2002 .

[2]  Zhangxin Chen Degenerate Two-Phase Incompressible Flow: I. Existence, Uniqueness and Regularity of a Weak Solution , 2001 .

[3]  John D. Towers,et al.  FRONT TRACKING FOR SCALAR BALANCE EQUATIONS , 2004 .

[4]  Darryl D. Holm,et al.  A New Integrable Equation with Peakon Solutions , 2002, nlin/0205023.

[5]  A. Constantin,et al.  Global Weak Solutions for a Shallow Water Equation , 2000 .

[6]  Giuseppe Maria Coclite,et al.  ON THE UNIQUENESS OF DISCONTINUOUS SOLUTIONS TO THE DEGASPERIS–PROCESI EQUATION , 2007 .

[7]  Zhaoyang Yin,et al.  On the Cauchy problem for an integrable equation with peakon solutions , 2003 .

[8]  Giuseppe Maria Coclite,et al.  On the well-posedness of the Degasperis-Procesi equation , 2006 .

[9]  Hailiang Liu,et al.  Critical Thresholds in a Convolution Model for Nonlinear Conservation Laws , 2001, SIAM J. Math. Anal..

[10]  Hans Lundmark,et al.  Multi-peakon solutions of the Degasperis–Procesi equation , 2003, nlin/0503033.

[11]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[12]  S. Osher Riemann Solvers, the Entropy Condition, and Difference , 1984 .

[13]  D. Serre L-Stability of Constants in a Model for Radiating Gases , 2003 .

[14]  Zhaoyang Yin,et al.  Global weak solutions for a new periodic integrable equation with peakon solutions , 2004 .

[15]  O. Mustafa A Note on the Degasperis-Procesi Equation , 2005 .

[16]  Ping Zhang,et al.  On the weak solutions to a shallow water equation , 2000 .

[17]  Darryl D. Holm,et al.  Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs , 2002, SIAM J. Appl. Dyn. Syst..

[18]  Zhaoyang Yin,et al.  Global solutions to a new integrable equation with peakons , 2004 .

[19]  Zhaoyang Yin,et al.  Global existence for a new periodic integrable equation , 2003 .

[20]  Hans Lundmark,et al.  Degasperis-Procesi peakons and the discrete cubic string , 2005, nlin/0503036.

[21]  Corrado Lattanzio,et al.  Global well-posedness and relaxation limits of a model for radiating gas , 2003 .

[22]  Antonio Degasperis,et al.  Symmetry and perturbation theory , 1999 .

[23]  Hans Lundmark,et al.  Formation and Dynamics of Shock Waves in the Degasperis-Procesi Equation , 2007, J. Nonlinear Sci..