A System of ODEs for a Perturbation of a Minimal Mass Soliton

We study soliton solutions to the nonlinear Schrödinger equation (NLS) with a saturated nonlinearity. NLS with such a nonlinearity is known to possess a minimal mass soliton. We consider a small perturbation of a minimal mass soliton and identify a system of ODEs extending the work of Comech and Pelinovsky (Commun. Pure Appl. Math. 56:1565–1607, 2003), which models the behavior of the perturbation for short times. We then provide numerical evidence that under this system of ODEs there are two possible dynamical outcomes, in accord with the conclusions of Pelinovsky et al. (Phys. Rev. E 53(2):1940–1953, 1996). Generically, initial data which supports a soliton structure appears to oscillate, with oscillations centered on a stable soliton. For initial data which is expected to disperse, the finite dimensional dynamics initially follow the unstable portion of the soliton curve.

[1]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[2]  M. Ablowitz,et al.  Spectral renormalization method for computing self-localized solutions to nonlinear systems. , 2005, Optics letters.

[3]  Gideon Simpson,et al.  Spectral analysis for matrix Hamiltonian operators , 2010, 1003.2474.

[4]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[5]  I. V. Barashenkov,et al.  Stability of the soliton-like “bubbles” , 1989 .

[6]  Mohamed El-Gamel,et al.  On the Galerkin and collocation methods for two-point boundary value problems using sinc bases , 2008, Comput. Math. Appl..

[7]  Mohamed El-Gamel,et al.  Sinc and the numerical solution of fifth-order boundary value problems , 2007, Appl. Math. Comput..

[8]  Taras I. Lakoba,et al.  Accelerated Imaginary‐time Evolution Methods for the Computation of Solitary Waves , 2007, 0711.3434.

[9]  Frank Stenger A “sinc-Galerkin” method of solution of boundary value problems , 1979 .

[10]  W. Schlag,et al.  The nonlinear Schrödinger equation , 2008 .

[11]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[12]  J. Shatah,et al.  Instability of nonlinear bound states , 1985 .

[13]  G. Stegeman,et al.  Stable self trapping and ring formation in polydiacetylene para-toluene sulfonate , 1995, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[14]  Wilhelm Schlag,et al.  Stable manifolds for all monic supercritical focusing nonlinear Schrödinger equations in one dimension , 2006 .

[15]  Nicola Bellomo,et al.  Nonlinear models and problems in applied sciences from differential quadrature to generalized collocation methods , 1997 .

[16]  Taras I. Lakoba,et al.  A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity , 2007, J. Comput. Phys..

[17]  Laurent Demanet,et al.  Numerical verification of a gap condition for a linearized nonlinear Schrödinger equation , 2006 .

[18]  Dmitry E. Pelinovsky,et al.  Purely nonlinear instability of standing waves with minimal energy , 2003 .

[19]  François Vidal,et al.  Laser-plasma filamentation and the spatially periodic nonlinear Schrödinger equation approximation , 1997 .

[20]  Scipio Cuccagna ON ASYMPTOTIC STABILITY OF GROUND STATES OF NLS , 2003 .

[21]  S. H. Behiry,et al.  Numerical method for the solution of special nonlinear fourth-order boundary value problems , 2003, Appl. Math. Comput..

[22]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[23]  John Lund,et al.  A sinc-collocation method for initial value problems , 1997, Math. Comput..

[24]  Bernard Bialecki Sinc-type approximations in H 1 -norm with applications to boundary value problems , 1989 .

[25]  Wilhelm Schlag,et al.  Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: II , 2006 .

[26]  Anders Berntson,et al.  Analysis of stable self-trapping of laser beams in cubic-quintic nonlinear media , 1998 .

[27]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[28]  V. Petviashvili Equation of an extraordinary soliton , 1976 .

[29]  L. R. Lundin,et al.  A cardinal function method of solution of the equation Δ , 1980 .

[30]  Jalal Shatah,et al.  Unstable ground state of nonlinear Klein-Gordon equations , 1985 .

[31]  Mohamed El-Gamel,et al.  Sinc-Galerkin method for solving nonlinear boundary-value problems , 2004 .

[32]  Wilhelm Schlag,et al.  Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: I , 2004 .

[33]  Bernard Bialecki,et al.  Sinc-Collection Methods for Two-Point Boundary Value Problems , 1991 .

[34]  Kamel Al-Khaled,et al.  Sinc numerical solution for solitons and solitary waves , 2001 .

[35]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[36]  Humberto Michinel,et al.  Stable azimuthal stationary state in quintic nonlinear optical media , 1997 .

[37]  Bruce Turkington,et al.  Nonequilibrium statistical behavior of nonlinear Schrödinger equations , 2006 .

[38]  Wilhelm Schlag,et al.  Stable manifolds for an orbitally unstable nonlinear Schrödinger equation , 2009 .

[39]  Kenneth L. Bowers,et al.  Sinc methods for quadrature and differential equations , 1987 .

[40]  Wilhelm Schlag Stable manifolds for an orbitally unstable NLS , 2004 .

[41]  Kevin McLeod,et al.  Uniqueness of positive radial solutions of Δ+()=0 in ⁿ. II , 1993 .

[42]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[43]  F. Stenger Numerical Methods Based on Whittaker Cardinal, or Sinc Functions , 1981 .

[44]  James Serrin,et al.  Uniqueness of positive radial solutions of Δu+f(u)=0 in ℝn , 1987 .

[45]  Pelinovsky,et al.  Nonlinear theory of oscillating, decaying, and collapsing solitons in the generalized nonlinear Schrödinger equation. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  G. Akrivis,et al.  On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .

[47]  Qiang Du,et al.  Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..

[48]  J. Shatah Stable standing waves of nonlinear Klein-Gordon equations , 1983 .

[49]  T. Lakoba,et al.  Universally‐Convergent Squared‐Operator Iteration Methods for Solitary Waves in General Nonlinear Wave Equations , 2007, nlin/0702033.

[50]  V. E. Grikurov,et al.  Simulation of instability of bright solitons for NLS with saturating nonlinearity , 2001 .

[51]  F. Stenger Summary of Sinc numerical methods , 2000 .

[52]  Vladimir S. Buslaev,et al.  On the stability of solitary waves for nonlinear Schr?odinger equations , 1995 .

[53]  V. A. Dougalis,et al.  Numerical Approximation of Blow-Up of Radially Symmetric Solutions of the Nonlinear Schrödinger Equation , 2003, SIAM J. Sci. Comput..

[54]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[55]  J. Craggs Applied Mathematical Sciences , 1973 .

[56]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[57]  I. V. Barashenkov,et al.  Stability and evolution of the quiescent and travelling solitonic bubbles , 1993 .

[58]  Sergio Rica,et al.  Coalescence and Droplets in the Subcritical Nonlinear Schrödinger Equation , 1997 .

[59]  Kevin McLeod,et al.  Uniqueness of Positive Radial Solutions of Δu + f(u) = 0 in ℝ n , II , 1993 .

[60]  George Papanicolaou,et al.  Focusing and multi-focusing solutions of the nonlinear Schro¨dinger equation , 1988 .

[61]  B. Luther-Davies,et al.  Three dimensional bright spatial soliton collision and fusion in a saturable Nonlinear Medium. , 1996, Physical review letters.

[62]  Sam Qian,et al.  Wavelets and the numerical solution of boundary value problems , 1993 .

[63]  Pomeau,et al.  Cavitation versus vortex nucleation in a superfluid model. , 1995, Physical review letters.

[64]  Roberto Revelli,et al.  Sinc collocation-interpolation method for the simulation of nonlinear waves , 2003 .

[65]  Georgios Akrivis,et al.  Solving the systems of equations arising in the discretization of some nonlinear p.d.e.'s by implicit Runge-Kutta methods , 1997 .

[66]  A. Soffer,et al.  Resonances, radiation damping and instabilitym in Hamiltonian nonlinear wave equations , 1998, chao-dyn/9807003.

[67]  Jeremy Louis Marzuola,et al.  Soliton Splitting by External Delta Potentials , 2007, J. Nonlinear Sci..

[68]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[69]  Jaeduck Jang,et al.  Uniqueness of positive radial solutions of Δu+f(u)=0 in RN, N≥2 , 2010 .

[70]  Luca Ridolfi,et al.  Solution of nonlinear initial-boundary value problems by sinc collocation-interpolation methods , 1995 .

[71]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .