A Time-Domain 147fsrms 2.5-MHz Bandwidth Two-Step Flash-MASH 1-1-1 Time-to-Digital Converter With Third-Order Noise-Shaping and Mismatch Correction

A 50 MS/s two-step flash-MASH 1-1-1 time-to-digital converter (TDC) employing a two-channel time-interleaved time-domain register with an implicit adder/subtractor realizes an error-feedback topology. Such an error-feedback unit of 1st-order noise-shaping TDC can be cascaded as a multi-stage noise shaping (MASH) configuration to achieve higher-order noise-shaping and, thereby high resolution. This paper also discusses different noise sources, linearity and noise tradeoffs in noise-shaping TDC and then demonstrates a histogram testing technique to correct the mismatch of 1st stage flash TDC. An on/off-chip delay modulation (DM) measurement technique is presented to characterize the TDC linearity and noise performance. Fabricated in 40-nm CMOS technology, the proposed TDC consumes 1.32 mW from a 1.1 V supply. At frequency below 2.5 MHz, the TDC error integrates to 147fsrms, which is equal to equivalent flash resolution of 1.6 ps.

[1]  Un-Ku Moon,et al.  A 71dB dynamic range third-order ΔΣ TDC using charge-pump , 2012, 2012 Symposium on VLSI Circuits (VLSIC).

[2]  Poras T. Balsara,et al.  1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[3]  John A. McNeill Jitter in ring oscillators , 1997 .

[4]  T. Rahkonen,et al.  ECL and CMOS ASICs for time-to-digital conversion , 1989, Proceedings., Second Annual IEEE ASIC Seminar and Exhibit,.

[5]  M.Z. Straayer,et al.  A Multi-Path Gated Ring Oscillator TDC With First-Order Noise Shaping , 2009, IEEE Journal of Solid-State Circuits.

[6]  Gabor C. Temes,et al.  Understanding Delta-Sigma Data Converters , 2004 .

[7]  Pietro Andreani,et al.  A 3.6 mW, 90 nm CMOS Gated-Vernier Time-to-Digital Converter With an Equivalent Resolution of 3.2 ps , 2012, IEEE Journal of Solid-State Circuits.

[8]  I. Nissinen,et al.  A CMOS time-to-digital converter based on a ring oscillator for a laser radar , 2003, ESSCIRC 2004 - 29th European Solid-State Circuits Conference (IEEE Cat. No.03EX705).

[9]  P. Dudek,et al.  A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line , 2000, IEEE Journal of Solid-State Circuits.

[10]  Fa Foster Dai,et al.  A Reconfigurable Vernier Time-to-Digital Converter With 2-D Spiral Comparator Array and Second-Order $\Delta \Sigma$ Linearization , 2018, IEEE Journal of Solid-State Circuits.

[11]  K. Karadamoglou,et al.  An 11-bit high-resolution and adjustable-range CMOS time-to-digital converter for space science instruments , 2004, IEEE Journal of Solid-State Circuits.

[12]  Stephan Henzler,et al.  A Local Passive Time Interpolation Concept for Variation-Tolerant High-Resolution Time-to-Digital Conversion , 2008, IEEE Journal of Solid-State Circuits.

[13]  Poki Chen,et al.  A CMOS pulse-shrinking delay element for time interval measurement , 2000 .

[14]  Michael P. Flynn,et al.  Digital Fractional- $N$ PLLs Based on a Continuous-Time Third-Order Noise-Shaping Time-to-Digital Converter for a 240-GHz FMCW Radar System , 2018, IEEE Journal of Solid-State Circuits.

[15]  Tadashi Maeda,et al.  A 2.1-to-2.8-GHz Low-Phase-Noise All-Digital Frequency Synthesizer With a Time-Windowed Time-to-Digital Converter , 2010, IEEE Journal of Solid-State Circuits.

[16]  Shinwoong Kim,et al.  A 14-nm 0.14-psrms Fractional-N Digital PLL With a 0.2-ps Resolution ADC-Assisted Coarse/Fine-Conversion Chopping TDC and TDC Nonlinearity Calibration , 2017, IEEE Journal of Solid-State Circuits.

[17]  Antonio Liscidini,et al.  Two-Dimensions Vernier Time-to-Digital Converter , 2010, IEEE Journal of Solid-State Circuits.

[18]  Paul Leroux,et al.  1-1-1 MASH $\Delta \Sigma$ Time-to-Digital Converters With 6 ps Resolution and Third-Order Noise-Shaping , 2012, IEEE Journal of Solid-State Circuits.

[19]  Enrico Temporiti,et al.  A 3.5 GHz Wideband ADPLL With Fractional Spur Suppression Through TDC Dithering and Feedforward Compensation , 2010, IEEE Journal of Solid-State Circuits.

[20]  A. Chandrakasan,et al.  On-chip picosecond time measurement , 2000, 2000 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.00CH37103).

[21]  T. Rahkonen,et al.  A high resolution time-to-digital converter based on time-to-voltage interpolation , 1997, Proceedings of the 23rd European Solid-State Circuits Conference.

[22]  Bosco H. Leung,et al.  A novel model on phase noise of ring oscillator based on last passage time , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[23]  SeongHwan Cho,et al.  A 0.22 ps rms Integrated Noise 15 MHz Bandwidth Fourth-Order ΔΣ Time-to-Digital Converter Using Time-Domain Error-Feedback Filter , 2015, IEEE Journal of Solid-State Circuits.

[24]  Robert B. Staszewski,et al.  Spur-Free Multirate All-Digital PLL for Mobile Phones in 65 nm CMOS , 2011, IEEE Journal of Solid-State Circuits.

[25]  A.A. Abidi,et al.  Phase Noise and Jitter in CMOS Ring Oscillators , 2006, IEEE Journal of Solid-State Circuits.

[26]  Jae-Yoon Sim,et al.  A 300-MS/s, 1.76-ps-Resolution, 10-b Asynchronous Pipelined Time-to-Digital Converter With on-Chip Digital Background Calibration in 0.13-µm CMOS , 2013, IEEE Journal of Solid-State Circuits.

[27]  David A. Johns,et al.  Time-interleaved oversampling A/D converters: theory and practice , 1997 .

[28]  Amr Elshazly,et al.  A Noise-Shaping Time-to-Digital Converter Using Switched-Ring Oscillators—Analysis, Design, and Measurement Techniques , 2014, IEEE Journal of Solid-State Circuits.

[29]  Willy M. C. Sansen,et al.  Low-noise wide-band amplifiers in bipolar and CMOS technologies , 1990, The Kluwer international series in engineering and computer science.

[30]  Roc Berenguer,et al.  An 802.11 a/b/g/n digital fractional-N PLL with automatic TDC linearity calibration for spur cancellation , 2016, 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC).

[31]  Fa Foster Dai,et al.  A 12-bit vernier ring time-to-digital converter in 0.13μm CMOS technology , 2009, 2009 Symposium on VLSI Circuits.

[32]  SeongHwan Cho,et al.  A 9 bit, 1.12 ps Resolution 2.5 b/Stage Pipelined Time-to-Digital Converter in 65 nm CMOS Using Time-Register , 2014, IEEE Journal of Solid-State Circuits.

[33]  A.A. Abidi,et al.  A 9 b, 1.25 ps Resolution Coarse–Fine Time-to-Digital Converter in 90 nm CMOS that Amplifies a Time Residue , 2008, IEEE Journal of Solid-State Circuits.

[34]  Behzad Razavi,et al.  Design of Analog CMOS Integrated Circuits , 1999 .

[35]  Timo Rahkonen,et al.  A CMOS Time-to-Digital Converter (TDC) Based On a Cyclic Time Domain Successive Approximation Interpolation Method , 2009, IEEE Journal of Solid-State Circuits.

[36]  Yue Chen,et al.  A 3.5–6.8-GHz Wide-Bandwidth DTC-Assisted Fractional-N All-Digital PLL With a MASH $\Delta \Sigma $ -TDC for Low In-Band Phase Noise , 2017, IEEE Journal of Solid-State Circuits.

[37]  Taeik Kim,et al.  A 0.004mm2 250μW ΔΣ TDC with time-difference accumulator and a 0.012mm2 2.5mW bang-bang digital PLL using PRNG for low-power SoC applications , 2012, 2012 IEEE International Solid-State Circuits Conference.

[38]  SeongHwan Cho,et al.  A $148fs_{rms}$ Integrated Noise 4 MHz Bandwidth Second-Order $\Delta\Sigma$ Time-to-Digital Converter With Gated Switched-Ring Oscillator , 2014, IEEE Transactions on Circuits and Systems I: Regular Papers.

[39]  Edoardo Charbon,et al.  A Time-Resolved, Low-Noise Single-Photon Image Sensor Fabricated in Deep-Submicron CMOS Technology , 2012, IEEE Journal of Solid-State Circuits.

[40]  Tadahiro Kuroda,et al.  A 10-Bit 80-MS/s Decision-Select Successive Approximation TDC in 65-nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[41]  Jochen Rivoir Fully-Digital Time-To-Digital Converter for ATE with Autonomous Calibration , 2006, 2006 IEEE International Test Conference.