Voltage-Gated Ions Sieving through 2D MXene Ti3C2Tx Membranes

We report a nanochanneled Ti3C2Tx MXene membrane that enables an efficient controlled rejection/permeation of inorganic ions and organic dye molecules under applied electrical potential. When a negative electrical potential (−0.6 V) is applied to the Ti3C2Tx MXene membrane under only osmotic pressure, the rejection of inorganic salt (NaCl or MgSO4) through the membrane is enhanced. In contrast, applying a positive potential inhibits the rejection through electrostatic repulsion between charged MXene layers and inorganic cations in solution. The rejection rates of Ti3C2Tx membranes are also tested in a flow-through system. MXene membranes as thin as 100 nm show a high rejection rate above 97.9 ± 1.0% for methylene blue dye molecules. Similar to inorganic salts, application of negative or positive voltages increases and decreases, respectively, the transport of molecules through Ti3C2Tx membranes. The voltage gated rejection through electronically conductive membranes is demonstrated as a promising alternat...

[1]  M. Jaroniec,et al.  A Regularly Channeled Lamellar Membrane for Unparalleled Water and Organics Permeation. , 2018, Angewandte Chemie.

[2]  Y. Gogotsi,et al.  Selective Etching of Silicon from Ti3 SiC2 (MAX) To Obtain 2D Titanium Carbide (MXene). , 2018, Angewandte Chemie.

[3]  Atsuo Yamada,et al.  MXene as a Charge Storage Host. , 2018, Accounts of chemical research.

[4]  Gongpin Liu,et al.  Ultrathin two-dimensional MXene membrane for pervaporation desalination , 2018 .

[5]  Yury Gogotsi,et al.  MXene molecular sieving membranes for highly efficient gas separation , 2018, Nature Communications.

[6]  Vladimir M. Shalaev,et al.  Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene) , 2018 .

[7]  Chang E. Ren,et al.  Selective Molecular Separation on Ti3C2Tx-Graphene Oxide Membranes during Pressure-Driven Filtration: Comparison with Graphene Oxide and MXenes. , 2017, ACS applied materials & interfaces.

[8]  P. Heitjans,et al.  Defibrillation of soft porous metal-organic frameworks with electric fields , 2017, Science.

[9]  Jagjit Nanda,et al.  Multimodality of Structural, Electrical, and Gravimetric Responses of Intercalated MXenes to Water. , 2017, ACS nano.

[10]  Yury Gogotsi,et al.  Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) , 2017 .

[11]  Pierre-Louis Taberna,et al.  Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides , 2017, Nature Energy.

[12]  Shaofan Li,et al.  Swelling of Graphene Oxide Membranes in Aqueous Solution: Characterization of Interlayer Spacing and Insight into Water Transport Mechanisms. , 2017, ACS nano.

[13]  Chang E. Ren,et al.  In Situ Monitoring of Gravimetric and Viscoelastic Changes in 2D Intercalation Electrodes , 2017 .

[14]  M. Barsoum,et al.  Alkylammonium Cation Intercalation into Ti3C2 (MXene): Effects on Properties and Ion-Exchange Capacity Estimation , 2017 .

[15]  Alexander C. Forse,et al.  Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy , 2017, Nature Energy.

[16]  Sarah J. Haigh,et al.  Tunable sieving of ions using graphene oxide membranes. , 2017, Nature nanotechnology.

[17]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[18]  A. Sinitskii,et al.  Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes , 2016 .

[19]  Yury Gogotsi,et al.  Electrochemical in Situ Tracking of Volumetric Changes in Two-Dimensional Metal Carbides (MXenes) in Ionic Liquids. , 2016, ACS applied materials & interfaces.

[20]  Kai Xiao,et al.  Atomic Defects in Monolayer Titanium Carbide (Ti3C2Tx) MXene. , 2016, ACS nano.

[21]  Yury Gogotsi,et al.  Electromagnetic interference shielding with 2D transition metal carbides (MXenes) , 2016, Science.

[22]  Pierre-Louis Taberna,et al.  Electrochemical and in-situ X-ray diffraction studies of Ti3C2Tx MXene in ionic liquid electrolyte , 2016 .

[23]  Y. Gogotsi,et al.  Ion-Exchange and Cation Solvation Reactions in Ti3C2 MXene , 2016 .

[24]  Jay R. Werber,et al.  Materials for next-generation desalination and water purification membranes , 2016 .

[25]  Yury Gogotsi,et al.  Antibacterial Activity of Ti₃C₂Tx MXene. , 2016, ACS nano.

[26]  Amir Barati Farimani,et al.  Water desalination with a single-layer MoS2 nanopore , 2015, Nature Communications.

[27]  Yury Gogotsi,et al.  Charge- and Size-Selective Ion Sieving Through Ti3C2Tx MXene Membranes. , 2015, The journal of physical chemistry letters.

[28]  Hongtao Yu,et al.  Voltage-Gated Transport of Nanoparticles across Free-Standing All-Carbon-Nanotube-Based Hollow-Fiber Membranes. , 2015, ACS applied materials & interfaces.

[29]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[30]  Chang E. Ren,et al.  Flexible and conductive MXene films and nanocomposites with high capacitance , 2014, Proceedings of the National Academy of Sciences.

[31]  Hongtao Yu,et al.  Constructing all carbon nanotube hollow fiber membranes with improved performance in separation and antifouling for water treatment. , 2014, Environmental science & technology.

[32]  G. Zeng,et al.  Evaluation of micellar enhanced ultrafiltration for removing methylene blue and cadmium ion simultaneously with mixed surfactants , 2014 .

[33]  M. Reed,et al.  Voltage gated ion and molecule transport in engineered nanochannels: theory, fabrication and applications , 2014, Nanotechnology.

[34]  S. Dai,et al.  Electrochemical control of ion transport through a mesoporous carbon membrane. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[35]  Baozhong Liu,et al.  Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. , 2014, Journal of the American Chemical Society.

[36]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[37]  Miao Zhu,et al.  Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions. , 2014, ACS nano.

[38]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[39]  Yury Gogotsi,et al.  Intercalation and delamination of layered carbides and carbonitrides , 2013, Nature Communications.

[40]  K. Shuford,et al.  Alkali Halide Interfacial Behavior in a Sequence of Charged Slit Pores , 2011 .

[41]  A. Ivaska,et al.  Electrochemically controlled ion transport across polypyrrole/multi-walled carbon nanotube composite , 2011 .

[42]  E. Wang,et al.  Nanostructured materials for water desalination , 2011, Nanotechnology.

[43]  Eric M.V. Hoek,et al.  A review of water treatment membrane nanotechnologies , 2011 .

[44]  T. Arnot,et al.  A review of reverse osmosis membrane materials for desalinationDevelopment to date and future poten , 2011 .

[45]  Menachem Elimelech,et al.  Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. , 2011, Environmental science & technology.

[46]  A. Ivaska,et al.  Transport of metal ions across an electrically switchable cation exchange membrane based on polypyrrole doped with a sulfonated calix[6]arene , 2010 .

[47]  Mahmoud Dhahbi,et al.  Separation of methylene blue from aqueous solution by micellar enhanced ultrafiltration , 2007 .

[48]  T. Mukherjee,et al.  Role of Ion exchange in permeation processes. , 2007, Talanta.

[49]  A. Majumdar,et al.  Electrostatic control of ions and molecules in nanofluidic transistors. , 2005, Nano letters.

[50]  Matsuhiko Nishizawa,et al.  Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity , 1995, Science.

[51]  R. Murray,et al.  An Ion Gate Membrane: Electrochemical Control of Ion Permeability through a Membrane with an Embedded Electrode , 1982 .

[52]  Majid Beidaghi,et al.  Solving the Capacitive Paradox of 2D MXene using Electrochemical Quartz‐Crystal Admittance and In Situ Electronic Conductance Measurements , 2015 .

[53]  M. Hussain,et al.  Conductivities and ionic association of copper(II) and manganese(II) sulfates in ethanol + water at 298.15 K , 1994 .