What new axioms could not be

The paper exposes the philosophical and mathematical flaws in an attempt to settle the continuum problem by a new class of axioms based on probabilistic reasoning. I also examine the larger proposal behind this approach, namely the introduction of new primitive notions that would supersede the set theoretic foundation of mathematics.

[1]  Detlef Dürr,et al.  Bohmsche Mechanik als Grundlage der Quantenmechanik , 2001 .

[2]  Solomon Feferman,et al.  Why a Little Bit Goes a Long Way: Logical Foundations of Scientifically Applicable Mathematics , 1992, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[3]  G. Kreisel,et al.  Two notes on the foundations of set‐theory , 1969 .

[4]  E. Zermelo Neuer Beweis für die Möglichkeit einer Wohlordnung , 1907 .

[5]  Saharon Shelah,et al.  Infinite abelian groups, whitehead problem and some constructions , 1974 .

[6]  John R. Steel,et al.  Does Mathematics Need New Axioms? , 2000, Bulletin of Symbolic Logic.

[7]  K. Gödel The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Kenneth Kunen,et al.  Random and Cohen Reals , 1984 .

[9]  Chris Freiling,et al.  Axioms of symmetry: Throwing darts at the real number line , 1986, Journal of Symbolic Logic.

[10]  John R. Steel,et al.  A proof of projective determinacy , 1989 .

[11]  Kai Hauser Is Cantor's Continuum Problem Inherently Vague? , 2002 .

[12]  Michiel van Lambalgen,et al.  Independence, randomness and the axiom of choice , 1992, Journal of Symbolic Logic.

[13]  R. Solovay A model of set-theory in which every set of reals is Lebesgue measurable* , 1970 .

[14]  Kurt Gödel,et al.  What is Cantor's Continuum Problem? , 1947 .

[15]  E. Zermelo Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .

[16]  P. J. Cohen,et al.  THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D Kahneman,et al.  On the reality of cognitive illusions. , 1996, Psychological review.

[18]  E. Jaynes Probability theory : the logic of science , 2003 .

[19]  Arthur H. Kruse,et al.  Some Notions of Random Sequence and Their Set-Theoretic Foundations , 1967 .

[20]  H. Friedman A consistent Fubini-Tonelli theorem for nonmeasurable functions , 1980 .

[21]  M. Beeson Foundations of Constructive Mathematics , 1985 .

[22]  A. Levy,et al.  Measurable cardinals and the continuum hypothesis , 1967 .

[23]  Saharon Shelah,et al.  Large cardinals imply that every reasonably definable set of reals is lebesgue measurable , 1990 .