Ferroelectric random access memory (FRAM) devices

Abstract: We review the history of, and recent advances in, ferroelectric memory, including ferroelectric random access memory (FRAM or FeRAM). FRAM is the first among advanced non-volatile memories, such as magnetoresistive random-access memory (MRAM), phase-change random access memory (PRAM) and resistive random access memory (ReRAM), to be commercialized. Highly reliable FRAM with a memory density of a few Mb is currently available. Since FRAM has excellent electric properties, such as a high speed read/write (

[1]  K. Saito,et al.  Ferroelectricity of one-axis-preferred-oriented polycrystalline Pb(Zr,Ti)O3 films prepared by pulsed-metalorganic chemical vapor deposition , 2002 .

[2]  F. Chu,et al.  Current and future ferroelectric nonvolatile memory technology , 2001 .

[3]  M. Aoki,et al.  Fully functional 0.5-/spl mu/m 64-kbit embedded SBT FeRAM using a new low temperature SBT deposition technique , 1999, 1999 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.99CH36325).

[4]  A. Tasch,et al.  Electrical and reliability characteristics of lead-zirconate-titanate (PZT) ferroelectric thin films for DRAM applications , 1989, International Technical Digest on Electron Devices Meeting.

[5]  Y. Tarui,et al.  Formation of Metal/Ferroelectric/Insulator/Semiconductor Structure with a CeO2 Buffer Layer , 1994 .

[6]  Y. Uemoto,et al.  Ferroelectric nonvolatile memory technology with bismuth layer-structured ferroelectric materials , 1996, ISAF '96. Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics.

[7]  T. Kawae,et al.  Improved leakage and ferroelectric properties of Mn and Ti codoped BiFeO3 thin films , 2009 .

[8]  J. Valasek Piezo-Electric and Allied Phenomena in Rochelle Salt , 1921 .

[9]  J. L. Moll,et al.  A new solid state memory resistor , 1963 .

[10]  I. Baginsky,et al.  Information writing mechanisms in thin-film mfis-structures , 1993 .

[11]  T. Mihara,et al.  Evaluation of Imprint Properties in Sol-Gel Ferroelectric Pb(ZrTi)O3 Thin-Film Capacitors , 1993 .

[12]  Igor Stolichnov,et al.  Nature of nonlinear imprint in ferroelectric films and long-term prediction of polarization loss in ferroelectric memories , 2004 .

[13]  J. Jr.,et al.  Low Voltage Lead Zirconate Titanate (PZT) and Lead Niobate Zirconate Titanate (PNZT) Hysteresis Loops , 1997 .

[14]  T. Someya,et al.  Communication sheets using printed organic nonvolatile memories , 2007, 2007 IEEE International Electron Devices Meeting.

[15]  S. Hoshino,et al.  On the Phase Transition in Lead Titanate , 1951 .

[16]  X. Yao,et al.  A systematic study on structural and dielectric properties of lead zirconate titanate/(Pb,La)(Zr(1−x)Ti(x))O3 thin films deposited by metallo‐organic decomposition technology , 1996 .

[17]  J. T. Evans,et al.  An experimental 512-bit nonvolatile memory with ferroelectric storage cell , 1988 .

[18]  Yoshihiro Ishibashi,et al.  Note on Ferroelectric Domain Switching , 1971 .

[19]  T. Eshita,et al.  4 Mbit embedded FRAM for high performance System on Chip (SoC) with large switching charge, reliable retention and high imprint resistance , 2002, Digest. International Electron Devices Meeting,.

[20]  M. Nakamura,et al.  Advanced 0.5 /spl mu/m FRAM device technology with full compatibility of half-micron CMOS logic device , 1997, International Electron Devices Meeting. IEDM Technical Digest.

[21]  T. Shiosaki,et al.  Preparation and Switching Kinetics of Pb(Zr, Ti)O3 Thin Films Deposited by Reactive Sputtering , 1991 .

[22]  Charles F. Pulvari,et al.  An Electrostatically Induced Permanent Memory , 1951 .

[23]  Julie Grollier,et al.  Solid-state memories based on ferroelectric tunnel junctions. , 2012, Nature nanotechnology.

[24]  S. Kawashima,et al.  Ferroelectric memory based secure dynamically programmable gate array , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).

[25]  K. Torii,et al.  Ultra-thin fatigue free lead zirconate titanate thin films for gigabit DRAMs , 1995, 1995 Symposium on VLSI Technology. Digest of Technical Papers.

[26]  V. Garcia,et al.  Giant tunnel electroresistance for non-destructive readout of ferroelectric states , 2009, Nature.

[27]  Changhong Yang,et al.  Low leakage current and enhanced ferroelectric properties of Ti and Zn codoped BiFeO3 thin film , 2008 .

[28]  Tohru Ozaki,et al.  A 1.6 GB/s DDR2 128 Mb Chain FeRAM With Scalable Octal Bitline and Sensing Schemes , 2010, IEEE Journal of Solid-State Circuits.

[29]  S. Sakaia,et al.  Highly Scalable Fe(Ferroelectric)-NAND Cell with MFIS(Metal-Ferroelectric-Insulator-Semiconductor) Structure for Sub-10nm Tera-Bit Capacity NAND Flash Memories , 2008, 2008 Joint Non-Volatile Semiconductor Memory Workshop and International Conference on Memory Technology and Design.

[30]  H. Ishiwara,et al.  Low-voltage operation of ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymer capacitors and metal-ferroelectric-insulator-semiconductor diodes , 2007 .

[31]  B. S. Kang,et al.  Lanthanum-substituted bismuth titanate for use in non-volatile memories , 1999, Nature.

[32]  Lothar Frey,et al.  Ferroelectricity in yttrium-doped hafnium oxide , 2011 .

[33]  T. H. Baum,et al.  Common and unique aspects of perovskite thin film CVD processes , 1998 .

[34]  Hidemi Takasu,et al.  A single-transistor ferroelectric memory cell , 1995, Proceedings ISSCC '95 - International Solid-State Circuits Conference.

[35]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[36]  Lothar Frey,et al.  Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications , 2011 .

[37]  G. R. Crane,et al.  Pyroelectricity and Optical Second Harmonic Generation in Polyvinylidene Fluoride Films , 1971 .

[38]  Thomas Mikolajick,et al.  Phase transitions in ferroelectric silicon doped hafnium oxide , 2011 .

[39]  M. C. Scott,et al.  Fatigue-free ferroelectric capacitors with platinum electrodes , 1995, Nature.

[40]  Shirane Gen,et al.  Phase Transitions in Solid Solutions of PbZrO3 and PbTiO3 (I) Small Concentrations of PbTiO3 , 1952 .

[41]  G. Busch,et al.  Early history of ferroelectricity , 1987 .

[42]  T. Hanyu,et al.  Complementary ferroelectric-capacitor logic for low-power logic-in-memory VLSI , 2003, IEEE Journal of Solid-State Circuits.

[43]  T. Sands,et al.  Microstructure of epitaxial La0.5Sr0.5CoO3/ferroelectric Pb0.9La0.1 (Zr0.2Ti0.8)0.975O3/La0.5Sr0.5CoO3 heterostructures on LaAlO3 , 1993 .

[44]  M. J. E. Ulenaers,et al.  Nanosecond switching of thin ferroelectric films , 1991 .

[45]  H. Kawai,et al.  The Piezoelectricity of Poly (vinylidene Fluoride) , 1969 .

[46]  S. Kawashima,et al.  Bitline GND sensing technique for low-voltage operation FeRAM , 2002 .

[47]  H. Ishiwara,et al.  Thirty-Day-Long Data Retention in Ferroelectric-Gate Field-Effect Transistors with HfO2 Buffer Layers , 2005 .

[48]  A. Fert,et al.  Tunnel junctions with multiferroic barriers. , 2007, Nature materials.

[49]  H. Ishiwara,et al.  Nonvolatile ferroelectric-gate field-effect transistors using SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures , 1999 .

[50]  E. Fujii,et al.  Microstructure-induced Schottky barrier effects in barium strontium titanate (BST) thin films for 16 and 64 Mbit (DRAM cells) , 1992, ISAF '92: Proceedings of the Eighth IEEE International Symposium on Applications of Ferroelectrics.

[51]  Y. Arimoto,et al.  A New Circuit Simulation Model of Ferroelectric Capacitors , 2002 .

[52]  Kentaro Ito,et al.  Memory modes of ferroelectric field effect transistors , 1977 .

[53]  M. Grell,et al.  Memory performance and retention of an all-organic ferroelectric-like memory transistor , 2005, IEEE Electron Device Letters.