Contrasting patterns of cortical input to architectural subdivisions of the area 8 complex: a retrograde tracing study in marmoset monkeys.

Contemporary studies recognize 3 distinct cytoarchitectural and functional areas within the Brodmann area 8 complex, in the caudal prefrontal cortex: 8b, 8aD, and 8aV. Here, we report on the quantitative characteristics of the cortical projections to these areas, using injections of fluorescent tracers in marmoset monkeys. Area 8b was distinct from both 8aD and 8aV due to its connections with medial prefrontal, anterior cingulate, superior temporal polysensory, and ventral midline/retrosplenial areas. In contrast, areas 8aD and 8aV received the bulk of the projections from posterior parietal cortex and dorsal midline areas. In the frontal lobe, area 8aV received projections primarily from ventrolateral areas, while both 8aD and 8b received dense inputs from areas on the dorsolateral surface. Whereas area 8aD received the most significant auditory projections, these were relatively sparse, in comparison with those previously reported in macaques. Finally, area 8aV was distinct from both 8aD and 8b by virtue of its widespread input from the extrastriate visual areas. These results are compatible with a homologous organization of the prefrontal cortex in New and Old World monkeys, and suggest significant parallels between the present pathways, revealed by tract-tracing, and networks revealed by functional connectivity analysis in Old World monkeys and humans.

[1]  Lauretta Passarelli,et al.  Cortical Connections of Area V6Av in the Macaque: A Visual-Input Node to the Eye/Hand Coordination System , 2011, The Journal of Neuroscience.

[2]  David Gaffan,et al.  Visual agnosia and Klüver–Bucy syndrome in marmosets (Callithrix jacchus) following ablation of inferotemporal cortex, with additional mnemonic effects of immunotoxic lesions of cholinergic projections to medial temporal areas , 2001, Brain Research.

[3]  L A Krubitzer,et al.  Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections , 1986, The Journal of comparative neurology.

[4]  Marcello G P Rosa,et al.  Brain maps, great and small: lessons from comparative studies of primate visual cortical organization , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[5]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[6]  J. Lynch,et al.  Corticocortical input to the smooth and saccadic eye movement subregions of the frontal eye field in Cebus monkeys. , 1996, Journal of neurophysiology.

[7]  Stephan Arndt,et al.  Age and regional cerebral blood flow in schizophrenia: age effects in anterior cingulate, frontal, and parietal cortex. , 2002, The Journal of neuropsychiatry and clinical neurosciences.

[8]  Yoshiro Shiba,et al.  Lesions of Ventrolateral Prefrontal or Anterior Orbitofrontal Cortex in Primates Heighten Negative Emotion , 2012, Biological Psychiatry.

[9]  H. Barbas,et al.  Medial Prefrontal Cortices Are Unified by Common Connections With Superior Temporal Cortices and Distinguished by Input From Memory‐Related Areas in the Rhesus Monkey , 1999, The Journal of comparative neurology.

[10]  C. Groves,et al.  Estimating the phylogeny and divergence times of primates using a supermatrix approach , 2009, BMC Evolutionary Biology.

[11]  A. Roberts,et al.  Uncoupling of behavioral and autonomic responses after lesions of the primate orbitofrontal cortex , 2008, Proceedings of the National Academy of Sciences.

[12]  Leslie G. Ungerleider,et al.  Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. , 1994, Cerebral cortex.

[13]  M. Gamberini,et al.  Resolving the organization of the New World monkey third visual complex: The dorsal extrastriate cortex of the marmoset (Callithrix jacchus) , 2005, The Journal of comparative neurology.

[14]  C. Bruce,et al.  Topography of projections to posterior cortical areas from the macaque frontal eye fields , 1995, The Journal of comparative neurology.

[15]  L. Garey Brodmann's localisation in the cerebral cortex , 1999 .

[16]  M G Rosa,et al.  The dorsomedial visual areas in New World and Old World monkeys: homology and function , 2001, The European journal of neuroscience.

[17]  C. Bruce,et al.  Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. , 1985, Journal of neurophysiology.

[18]  Michael Petrides,et al.  The marmoset brain in stereotaxic coordinates , 2012 .

[19]  P. Legendre Species associations: the Kendall coefficient of concordance revisited , 2005 .

[20]  D. Buxhoeveden,et al.  The linear organization of cell columns in human and nonhuman anthropoid Tpt cortex , 1996, Anatomy and Embryology.

[21]  Michael D. Abràmoff,et al.  Image processing with ImageJ , 2004 .

[22]  H. Barbas Pattern in the laminar origin of corticocortical connections , 1986, The Journal of comparative neurology.

[23]  L A Krubitzer,et al.  Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections , 1986, The Journal of comparative neurology.

[24]  G. Jocham,et al.  The tachykinin NK3 receptor antagonist SR142801 blocks the behavioral effects of cocaine in marmoset monkeys. , 2006, European journal of pharmacology.

[25]  D. Mitchell The nexus between decision making and emotion regulation: A review of convergent neurocognitive substrates , 2011, Behavioural Brain Research.

[26]  T. Insel,et al.  Differential expansion of neural projection systems in primate brain evolution. , 1999, Neuroreport.

[27]  T. Robbins,et al.  Cognitive inflexibility after prefrontal serotonin depletion is behaviorally and neurochemically specific. , 2006, Cerebral cortex.

[28]  Trevor W Robbins,et al.  Forebrain connectivity of the prefrontal cortex in the marmoset monkey (Callithrix jacchus): An anterograde and retrograde tract‐tracing study , 2007, The Journal of comparative neurology.

[29]  R Gattass,et al.  Topographic organization of cortical input to striate cortex in the Cebus monkey: A fluorescent tracer study , 1991, The Journal of comparative neurology.

[30]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[31]  Marcello G P Rosa,et al.  Quantitative analysis of the corticocortical projections to the middle temporal area in the marmoset monkey: evolutionary and functional implications. , 2006, Cerebral cortex.

[32]  Iwona Stepniewska,et al.  Ipsilateral cortical connections of motor, premotor, frontal eye, and posterior parietal fields in a prosimian primate, Otolemur garnetti , 2005, The Journal of comparative neurology.

[33]  C. Galletti,et al.  Connections of the Dorsomedial Visual Area: Pathways for Early Integration of Dorsal and Ventral Streams in Extrastriate Cortex , 2009, The Journal of Neuroscience.

[34]  G. Orban,et al.  Default Mode of Brain Function in Monkeys , 2011, The Journal of Neuroscience.

[35]  H. Barbas,et al.  Organization of afferent input to subdivisions of area 8 in the rhesus monkey , 1981, The Journal of comparative neurology.

[36]  M. Rosa,et al.  Visual areas in lateral and ventral extrastriate cortices of the marmoset monkey , 2000, The Journal of comparative neurology.

[37]  P. Strick,et al.  Spinal Cord Terminations of the Medial Wall Motor Areas in Macaque Monkeys , 1996, The Journal of Neuroscience.

[38]  P S Goldman-Rakic,et al.  Association of Storage and Processing Functions in the Dorsolateral Prefrontal Cortex of the Nonhuman Primate , 1999, The Journal of Neuroscience.

[39]  Matthew W Spitzer,et al.  Anatomical and physiological definition of the motor cortex of the marmoset monkey , 2008, The Journal of comparative neurology.

[40]  Nicholas A. Bock,et al.  Visualizing the entire cortical myelination pattern in marmosets with magnetic resonance imaging , 2009, Journal of Neuroscience Methods.

[41]  G. Luppino,et al.  Cortical connections of the macaque caudal ventrolateral prefrontal areas 45A and 45B. , 2010, Cerebral cortex.

[42]  Matthew W Spitzer,et al.  Connections of the marmoset rostrotemporal auditory area: express pathways for analysis of affective content in hearing , 2009, The European journal of neuroscience.

[43]  R Gattass,et al.  Area V4 in Cebus monkey: extent and visuotopic organization. , 1998, Cerebral cortex.

[44]  Vinod Menon,et al.  Functional connectivity in the resting brain: A network analysis of the default mode hypothesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Michael Unser,et al.  A pyramid approach to subpixel registration based on intensity , 1998, IEEE Trans. Image Process..

[46]  John D. Newman,et al.  A combined histological and MRI brain atlas of the common marmoset monkey, Callithrix jacchus , 2009, Brain Research Reviews.

[47]  J. Feldon,et al.  Evidence for Altered Monoamine Activity and Emotional and Cognitive Disturbance in Marmoset Monkeys Exposed to Early Life Stress , 2004, Annals of the New York Academy of Sciences.

[48]  M G Rosa,et al.  Visual areas in the dorsal and medial extrastriate cortices of the marmoset , 1995, The Journal of comparative neurology.

[49]  J. Feldon,et al.  Enhancing effects of nicotine and impairing effects of scopolamine on distinct aspects of performance in computerized attention and working memory tasks in marmoset monkeys , 2006, Neuropharmacology.

[50]  Bernice W. Polemis Nonparametric Statistics for the Behavioral Sciences , 1959 .

[51]  Kathleen J. Burman,et al.  Architectural subdivisions of medial and orbital frontal cortices in the marmoset monkey (Callithrix jacchus) , 2009, The Journal of comparative neurology.

[52]  F. Condé Further studies on the use of the fluorescent tracers fast blue and diamidino yellow: Effective uptake area and cellular storage sites , 1987, Journal of Neuroscience Methods.

[53]  D. Pandya,et al.  Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns , 1999, The European journal of neuroscience.

[54]  K. Kubota,et al.  Cytoarchitecture and intrafrontal connections of the frontal cortex of the brain of the hamadryas baboon (Papio hamadryas) , 1991, The Journal of comparative neurology.

[55]  Michela Gamberini,et al.  Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas , 2006, The Journal of comparative neurology.

[56]  C. Lucchetti,et al.  Auditory environmental cells and visual fixation effect in area 8B of macaque monkey , 2005, Experimental Brain Research.

[57]  G. Shulman,et al.  Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[58]  H. Frahm,et al.  New and revised data on volumes of brain structures in insectivores and primates. , 1981, Folia primatologica; international journal of primatology.

[59]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[60]  A. Wree,et al.  Three-dimensional cytoarchitectonic analysis of the posterior bank of the human precentral sulcus , 2005, Anatomy and Embryology.

[61]  A. Morel,et al.  Connections of visual areas of the upper temporal lobe of owl monkeys: the MT crescent and dorsal and ventral subdivisions of FST , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  B. '. ’t Hart,et al.  The MPTP marmoset model of parkinsonism: a multi-purpose non-human primate model for neurodegenerative diseases. , 2010, Drug discovery today.

[63]  Marcello G P Rosa,et al.  Subcortical projections to the frontal pole in the marmoset monkey , 2011, The European journal of neuroscience.

[64]  Kiralee M. Hayashi,et al.  Structural Correlates of Apathy in Alzheimer’s Disease , 2007, Dementia and Geriatric Cognitive Disorders.

[65]  P. Goldman-Rakic,et al.  Auditory belt and parabelt projections to the prefrontal cortex in the Rhesus monkey , 1999, The Journal of comparative neurology.

[66]  M. Petrides Comparative architectonic analysis of the human and the macaque frontal cortex , 1994 .

[67]  D. Zald,et al.  Neuroscience and Biobehavioral Reviews Anatomical Insights into the Interaction of Emotion and Cognition in the Prefrontal Cortex , 2022 .

[68]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[69]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[70]  T. Paus Location and function of the human frontal eye-field: A selective review , 1996, Neuropsychologia.

[71]  D Carden,et al.  Eye movements induced by electrical stimulation of the frontal eye fields of marmosets and squirrel monkeys. , 1982, Brain, behavior and evolution.

[72]  D. Pandya,et al.  Comparison of prefrontal architecture and connections. , 1996, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[73]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[74]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[75]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: II. Cortical afferents , 2003, The Journal of comparative neurology.

[76]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[77]  M. Mishkin,et al.  Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex , 1999, Nature Neuroscience.

[78]  T. Robbins,et al.  Prefrontal Serotonin Depletion Affects Reversal Learning But Not Attentional Set Shifting , 2005, The Journal of Neuroscience.

[79]  G. Elston,et al.  Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): Middle temporal area, middle temporal crescent, and surrounding cortex , 1998, The Journal of comparative neurology.

[80]  Ricardo Gattass,et al.  Third tier ventral extrastriate cortex in the New World monkey, Cebus apella , 2000, Experimental Brain Research.

[81]  J. Bullier,et al.  Functional streams in occipito-frontal connections in the monkey , 1996, Behavioural Brain Research.

[82]  M. Rosa,et al.  A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision , 2006, The European journal of neuroscience.

[83]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[84]  H. Barbas,et al.  Diversity of laminar connections linking periarcuate and lateral intraparietal areas depends on cortical structure , 2006, The European journal of neuroscience.

[85]  Robert Desimone,et al.  Cortical Connections of Area V4 in the Macaque , 2008 .

[86]  Lina Shihabuddin,et al.  MRI assessment of gray and white matter distribution in Brodmann's areas of the cortex in patients with schizophrenia with good and poor outcomes. , 2003, The American journal of psychiatry.

[87]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: I. Three‐dimensional and cytoarchitectonic organization , 2000, The Journal of comparative neurology.

[88]  Claus C Hilgetag,et al.  Graded classes of cortical connections: quantitative analyses of laminar projections to motion areas of cat extrastriate cortex , 2005, The European journal of neuroscience.

[89]  Aldo Genovesio,et al.  Prefrontal Cortex Activity during the Discrimination of Relative Distance , 2011, The Journal of Neuroscience.

[90]  Michela Gamberini,et al.  Is the Medial Posterior Parietal Area V6A a Single Functional Area? , 2011, The Journal of Neuroscience.

[91]  L. Heimer,et al.  In vivo anterograde and retrograde axonal trnasport of the fluoresecent rhodamine-dextran-amine, Fluor-Ruby, within the CNS , 1990, Brain Research.

[92]  H. Barbas Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey , 1988, The Journal of comparative neurology.

[93]  D. Lewis,et al.  Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus , 2005, The Journal of comparative neurology.

[94]  Hsin-Hao Yu,et al.  Cortical input to the frontal pole of the marmoset monkey. , 2011, Cerebral Cortex.

[95]  S. Shimojo,et al.  Parcellation and Area-Area Connectivity as a Function of Neocortex Size , 2005, Brain, Behavior and Evolution.

[96]  T. Egner,et al.  Emotional processing in anterior cingulate and medial prefrontal cortex , 2011, Trends in Cognitive Sciences.

[97]  Edilson Ervolino,et al.  Cyto-, myelo- and chemoarchitecture of the prefrontal cortex of the Cebus monkey , 2011, BMC Neuroscience.

[98]  J. Kaas,et al.  Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans , 2001, The Journal of comparative neurology.

[99]  D. Pandya,et al.  Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey , 1978, Brain Research.

[100]  H. Kennedy,et al.  Laminar Distribution of Neurons in Extrastriate Areas Projecting to Visual Areas V1 and V4 Correlates with the Hierarchical Rank and Indicates the Operation of a Distance Rule , 2000, The Journal of Neuroscience.

[101]  M. Lanzilotto,et al.  Auditory-motor and cognitive aspects in area 8B of macaque monkey’s frontal cortex: a premotor ear–eye field (PEEF) , 2008, Experimental Brain Research.

[102]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[103]  T. Robbins,et al.  Dopamine, But Not Serotonin, Regulates Reversal Learning in the Marmoset Caudate Nucleus , 2011, The Journal of Neuroscience.

[104]  Paolo Cignoni,et al.  MeshLab: an Open-Source Mesh Processing Tool , 2008, Eurographics Italian Chapter Conference.

[105]  H. Kuypers,et al.  Diamidino yellow dihydrochloride (DY·2HCl); a new fluorescent retrograde neuronal tracer, which migrates only very slowly out of the cell , 2004, Experimental Brain Research.

[106]  J. Kaas,et al.  Architectionis, somatotopic organization, and ipsilateral cortical connections of the primary motor area (M1) of owl monkeys , 1993, The Journal of comparative neurology.

[107]  Nikola T. Markov,et al.  Weight Consistency Specifies Regularities of Macaque Cortical Networks , 2010, Cerebral cortex.