Adaptive exponential synchronization of delayed chaotic networks

Abstract This paper deals with the global exponential synchronization of a class of delayed chaotic networks. Under some simple conditions, the global synchronization of a network about its all variables is derived by only considering the global synchronization of its partial variables. Furthermore, based on the Halanay inequality technique, some delay-independent criteria are obtained to ensure the adaptive exponential synchronization of the model. And the simpler, less conservative and more efficient results are easy to be verified in engineering applications. Finally, an illustrative example is given to demonstrate the effectiveness of the presented synchronization scheme.

[1]  G. Rangarajan,et al.  Stability of synchronized chaos in coupled dynamical systems , 2002, nlin/0201037.

[2]  Guanrong Chen,et al.  On global synchronization of chaotic systems , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[3]  Daniel W. C. Ho,et al.  Synchronization Criteria for Lur'e Systems by Dynamic Output Feedback with Time-Delay , 2006, Int. J. Bifurc. Chaos.

[4]  S Sundar,et al.  Synchronization of randomly multiplexed chaotic systems with application to communication. , 2000, Physical review letters.

[5]  Teh-Lu Liao,et al.  Adaptive synchronization of chaotic systems and its application to secure communications , 2000 .

[6]  K. Gopalsamy Stability and Oscillations in Delay Differential Equations of Population Dynamics , 1992 .

[7]  Chi-Chuan Hwang,et al.  Exponential synchronization of a class of chaotic neural networks , 2005 .

[8]  S H Strogatz,et al.  Coupled oscillators and biological synchronization. , 1993, Scientific American.

[9]  Ying-Cheng Lai,et al.  Experimental Observation of Lag Synchronization in Coupled Chaotic Systems , 2000, Int. J. Bifurc. Chaos.

[10]  M. Feki An adaptive chaos synchronization scheme applied to secure communication , 2003 .

[11]  Jinde Cao,et al.  Synchronization criteria of Lur’e systems with time-delay feedback control , 2005 .

[12]  L. Glass Synchronization and rhythmic processes in physiology , 2001, Nature.

[13]  Jinde Cao,et al.  Global synchronization in arrays of delayed neural networks with constant and delayed coupling , 2006 .

[14]  Chunguang Li,et al.  Synchronization in general complex dynamical networks with coupling delays , 2004 .

[15]  Charles M. Gray,et al.  Synchronous oscillations in neuronal systems: Mechanisms and functions , 1994, Journal of Computational Neuroscience.

[16]  Xiao Fan Wang,et al.  Synchronization in Small-World Dynamical Networks , 2002, Int. J. Bifurc. Chaos.

[17]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[18]  Vicente Pérez-Muñuzuri,et al.  Autowaves for Image Processing on a Two-Dimensional CNN Array of Excitable Nonlinear Circuits: Flat and Wrinkled Labyrinths V. Perez-Mufiuzuri, V. Perez-Villar, and Leon 0. Chua, Fellow, ZEEE , 1993 .

[19]  Jinhu Lu,et al.  Synchronization of an uncertain unified chaotic system via adaptive control , 2002 .

[20]  Daolin Xu,et al.  A secure communication scheme using projective chaos synchronization , 2004 .

[21]  Jinde Cao,et al.  Synchronization in an array of linearly coupled networks with time-varying delay ☆ , 2006 .

[22]  L. Chua,et al.  Synchronization in an array of linearly coupled dynamical systems , 1995 .

[23]  Frank C. Hoppensteadt,et al.  Pattern recognition via synchronization in phase-locked loop neural networks , 2000, IEEE Trans. Neural Networks Learn. Syst..

[24]  A. A. Alexeyev,et al.  CHAOTIC SYNCHRONIZATION OF MUTUALLY-COUPLED GENERATORS WITH FREQUENCY-CONTROLLED FEEDBACK LOOP , 1995 .

[25]  Xiao Fan Wang,et al.  Synchronization in scale-free dynamical networks: robustness and fragility , 2001, cond-mat/0105014.

[26]  Michael Rosenblum,et al.  A characteristic frequency of chaotic dynamical system , 1993 .

[27]  Guanrong Chen,et al.  Pinning control of scale-free dynamical networks , 2002 .

[28]  Jinde Cao,et al.  Adaptive synchronization of neural networks with or without time-varying delay. , 2006, Chaos.

[29]  G. Rangarajan,et al.  General stability analysis of synchronized dynamics in coupled systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[31]  Daolin Xu,et al.  Controlled Projective Synchronization in Nonpartially-Linear Chaotic Systems , 2002, Int. J. Bifurc. Chaos.

[32]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.