Optimal trajectory tracking control of unmanned aerial vehicle using ANFIS-IPSO system

Accurate and precise trajectory tracking is crucial for unmanned aerial vehicle (UAVs) to operate in disturbed environments. This paper presents a novel tracking hybrid controller for a quadrotor UAV that combines the robust adaptive neuro-fuzzy inference system (ANFIS) controller and Improved Particle Swarm Optimization algorithm (IPSO) model based on functional inertia weight. The controller is implemented in a three degrees of freedom (3 DOF) quadrotor symbolized with its non-linear dynamical mathematical model. To achieve Cartesian position trajectory tracking capability, the construction of the controller can be divided into two stages: a regular ANFIS controller to guarantee fast convergence rapidity and IPSO aims to facilitate convergence to the ANFIS’s optimal parameters to accurately reproduce a desired reference trajectory. Simulation results are given to confirm the advantages of the proposed intelligent control, compared with ANFIS and PID control methods.

[1]  Marie Lachaise,et al.  Traffic monitoring with serial images from airborne cameras , 2006 .

[2]  Konstantinos Kanistras,et al.  A survey of unmanned aerial vehicles (UAVs) for traffic monitoring , 2013, 2013 International Conference on Unmanned Aircraft Systems (ICUAS).

[3]  Kimon P. Valavanis,et al.  Advances in Unmanned Aerial Vehicles , 2007 .

[4]  Reg Austin,et al.  Unmanned Aircraft Systems: Uavs Design, Development and Deployment , 2010 .

[5]  A. Rizzo,et al.  A Risk-aware Path Planning Method for Unmanned Aerial Vehicles , 2018, 2018 International Conference on Unmanned Aircraft Systems (ICUAS).

[6]  Pedro Ponce,et al.  Experimental Fuzzy Logic Controller Type 2 for a Quadrotor Optimized by ANFIS , 2015 .

[7]  Prem Mahadevan The military utility of drones , 2010 .

[8]  Ashwani Kharola Design of a Hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) Controller for Position and Angle control of Inverted Pendulum (IP) Systems , 2016, Int. J. Fuzzy Syst. Appl..

[9]  Qun Zong,et al.  Multivariable finite‐time output feedback trajectory tracking control of quadrotor helicopters , 2018 .

[10]  Rogelio Lozano,et al.  Unmanned Aerial Vehicles Embedded Control , 2013 .

[11]  Gang Tao,et al.  Robust Backstepping Sliding-Mode Control and Observer-Based Fault Estimation for a Quadrotor UAV , 2016, IEEE Transactions on Industrial Electronics.

[12]  Antonio Barrientos,et al.  Aerial coverage optimization in precision agriculture management: A musical harmony inspired approach , 2013 .

[13]  Roland Siegwart,et al.  Linear vs Nonlinear MPC for Trajectory Tracking Applied to Rotary Wing Micro Aerial Vehicles , 2016, ArXiv.

[14]  Kamaraj Nagappan,et al.  AGC for multisource deregulated power system using ANFIS controller , 2017 .

[15]  J. Dréo,et al.  Métaheuristiques pour l'optimisation difficile , 2003 .

[16]  Ibraheem Nasiruddin,et al.  Design and Simulation of a Hybrid PD-ANFIS Controller for Attitude Tracking Control of a Quadrotor UAV , 2017, Arabian Journal for Science and Engineering.

[17]  Ammar A. Aldair,et al.  Design and implementation of ANFIS-reference model controller based MPPT using FPGA for photovoltaic system , 2018 .

[18]  Jochen Teizer,et al.  Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system , 2014 .

[19]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[20]  Giorgio Guglieri,et al.  A Minimum Risk Approach for Path Planning of UAVs , 2011, J. Intell. Robotic Syst..

[21]  Yongduan Song,et al.  Design of a Unified Power Controller for Variable-Speed Fixed-Pitch Wind Energy Conversion System , 2016, IEEE Transactions on Industrial Electronics.

[22]  Kenzo Nonami,et al.  Autonomous Flying Robots , 2010 .

[23]  Rui Wang,et al.  Trajectory tracking control of a 6-DOF quadrotor UAV with input saturation via backstepping , 2018, J. Frankl. Inst..

[24]  T. Bouktir,et al.  An Efficient Maximum Power Point Tracking Controller for Photovoltaic Systems Using Takagi–Sugeno Fuzzy Models , 2017 .

[25]  R. W. Dobbins,et al.  Computational intelligence PC tools , 1996 .

[26]  V. A. Knyaz,et al.  PHOTOGRAMMETRIC TECHNIQUES FOR ROAD SURFACE ANALYSIS , 2016 .

[27]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[28]  Cheng Liang,et al.  Using High-Resolution Imagery Acquired with an Autonomous Unmanned Aerial Vehicle for Urban Construction and Planning , 2013 .

[29]  Aida Mustapha,et al.  Adjustable autonomy: a systematic literature review , 2017, Artificial Intelligence Review.

[30]  Youmin Zhang,et al.  Automated Maneuvering Decision for UAVs in Forest Surveillance and Fire Detection Missions* , 2018, 2018 International Conference on Unmanned Aircraft Systems (ICUAS).

[31]  R. S. Freeland,et al.  Politics & technology: U.S. polices restricting unmanned aerial systems in agriculture , 2014 .

[32]  Jie Liu,et al.  Trajectory tracking control for a quadrotor UAV via extended state observer , 2018 .

[33]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[34]  Douglas Marshall,et al.  Introduction to Unmanned Aircraft Systems , 2011 .

[35]  Maurice Clerc,et al.  Une méthode inspirée de comportements coopératifs observés dans la nature : l'optimisation par essaim particulaire , 2009 .

[36]  Pedro Ponce,et al.  Fuzzy Logic Sugeno Controller Type-2 For Quadrotors Based on Anfis , 2016 .

[37]  M. A. Abido,et al.  An Efficient ANFIS-Based PI Controller for Maximum Power Point Tracking of PV Systems , 2015 .

[38]  Yisheng Zhong,et al.  Robust Three-Loop Trajectory Tracking Control for Quadrotors With Multiple Uncertainties , 2016, IEEE Transactions on Industrial Electronics.

[39]  Kenzo Nonami,et al.  Autonomous Flying Robots: Unmanned Aerial Vehicles and Micro Aerial Vehicles , 2010 .

[40]  Billie F. Spencer,et al.  ANFIS based quadrotor drone altitude control implementation on Raspberry Pi platform , 2018, Analog Integrated Circuits and Signal Processing.

[41]  Anirban Mukhopadhyay,et al.  Neuro-Fuzzy Controller Design to Navigate Unmanned Vehicle with Construction of Traffic Rules to Avoid Obstacles , 2016, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[42]  Almoataz Y. Abdelaziz,et al.  Power Extraction from PV Module Using Hybrid ANFIS Controller , 2019, Power Systems.

[43]  Héctor Ríos,et al.  Continuous Sliding-Mode Control Strategies for Quadrotor Robust Tracking: Real-Time Application , 2019, IEEE Transactions on Industrial Electronics.

[44]  Mohamed M. Ismail,et al.  Smart battery controller using ANFIS for three phase grid connected PV array system , 2020, Math. Comput. Simul..

[45]  Joseph Y. J. Chow Dynamic UAV-based traffic monitoring under uncertainty as a stochastic arc-inventory routing policy , 2016, 1609.03201.

[46]  Kimon P. Valavanis,et al.  Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy , 2007 .

[47]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[48]  Bhim Singh,et al.  Implementation of ANFIS Controller-Based Algorithm Measuring Speed to Eliminate RDC Hardware in Resolver-Based PMSM , 2018, Lecture Notes in Electrical Engineering.