Entanglement and Non-Locality in Quantum Protocols with Identical Particles

We study the role of entanglement and non-locality in quantum protocols that make use of systems of identical particles. Unlike in the case of distinguishable particles, the notions of entanglement and non-locality for systems whose constituents cannot be distinguished and singly addressed are still debated. We clarify why the only approach that avoids incongruities and paradoxes is the one based on the second quantization formalism, whereby it is the entanglement of the modes that can be populated by the particles that really matters and not the particles themselves. Indeed, by means of a metrological and of a teleportation protocol, we show that inconsistencies arise in formulations that force entanglement and non-locality to be properties of the identical particles rather than of the modes they can occupy. The reason resides in the fact that orthogonal modes can always be addressed while identical particles cannot.

[1]  A. Smerzi,et al.  Hyper- and hybrid nonlocality. , 2018, Physical review letters.

[2]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[3]  M. Kus,et al.  Entanglement for multipartite systems of indistinguishable particles , 2010, 1012.0758.

[4]  H. Narnhofer Entanglement, split and nuclearity in quantum field theory , 2002 .

[5]  J. R. Palamos,et al.  Quantum-Enhanced Advanced LIGO Detectors in the Era of Gravitational-Wave Astronomy. , 2019, Physical review letters.

[6]  Michael M. Wolf,et al.  Entanglement in fermionic systems , 2007, 0705.1103.

[7]  John Calsamiglia Generalized measurements by linear elements , 2002 .

[8]  A. Buchleitner,et al.  Quantum teleportation with identical particles , 2015, 1502.05814.

[9]  Michael R. Grace,et al.  Quantum-Enhanced Fiber-Optic Gyroscopes using Quadrature Squeezing and Continuous-Variable Entanglement , 2020, 2020 Conference on Lasers and Electro-Optics (CLEO).

[10]  U. Marzolino,et al.  Entanglement in fermion systems and quantum metrology , 2014, 1403.1144.

[11]  T. Arpornthip,et al.  Quantum Rotation Sensing with Dual Sagnac Interferometers in an Atom-Optical Waveguide. , 2019, Physical review letters.

[12]  Laura Mančinska,et al.  Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.

[13]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[14]  Atom-Light Hybrid Quantum Gyroscope , 2020, 2009.06166.

[15]  Robert Wille,et al.  Exploiting Quantum Teleportation in Quantum Circuit Mapping , 2020, 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC).

[16]  B. Yurke,et al.  Bell's-inequality experiments using independent-particle sources. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[17]  Giuseppe Compagno,et al.  Quantum entanglement of identical particles by standard information-theoretic notions , 2015, Scientific Reports.

[18]  N. Cerf,et al.  Majorization relations and entanglement generation in a beam splitter , 2013, 1301.5229.

[19]  T. Nishioka Entanglement entropy: Holography and renormalization group , 2018, Reviews of Modern Physics.

[20]  A. Buchleitner,et al.  Essential entanglement for atomic and molecular physics , 2010, 1012.3940.

[21]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[22]  V. Vedral,et al.  Natural mode entanglement as a resource for quantum communication. , 2009, Physical review letters.

[23]  U. Marzolino,et al.  Sub-shot-noise quantum metrology with entangled identical particles , 2010, 1001.3313.

[24]  G. Milburn,et al.  Generalized uncertainty relations: Theory, examples, and Lorentz invariance , 1995, quant-ph/9507004.

[25]  Gérard G. Emch,et al.  Algebraic methods in statistical mechanics and quantum field theory , 1972 .

[26]  G. Compagno,et al.  Dealing with indistinguishable particles and their entanglement , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[28]  Debbie W. Leung,et al.  Unified derivations of measurement-based schemes for quantum computation , 2005 .

[29]  D. Leung,et al.  Methodology for quantum logic gate construction , 2000, quant-ph/0002039.

[30]  D. Gross,et al.  Novel schemes for measurement-based quantum computation. , 2006, Physical review letters.

[31]  G. Gour,et al.  Quantum resource theories , 2018, Reviews of Modern Physics.

[32]  A. Buchleitner,et al.  Performances and robustness of quantum teleportation with identical particles , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  K. Sanders,et al.  Entanglement Measures and Their Properties in Quantum Field Theory , 2017, 1702.04924.

[34]  Fabio Benatti,et al.  Remarks on Entanglement and Identical Particles , 2017, Open Syst. Inf. Dyn..

[35]  Direct observation of the particle exchange phase of photons , 2020, 2011.08777.

[36]  M. Genovese Experimental quantum enhanced optical interferometry , 2021, AVS Quantum Science.

[37]  U. Marzolino,et al.  Bipartite entanglement in systems of identical particles: The partial transposition criterion , 2012, 1202.2993.

[38]  Fabio Benatti,et al.  Entanglement and squeezing with identical particles: ultracold atom quantum metrology , 2011 .

[39]  A. Vourdas,et al.  SU(2) and SU(1,1) phase states. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[40]  W. Munro,et al.  Entanglement is not a critical resource for quantum metrology , 2009, 0906.1027.

[41]  Rupert Ursin,et al.  Entanglement-enhanced optical gyroscope , 2018, New Journal of Physics.

[42]  Immanuel Bloch,et al.  Single-atom-resolved fluorescence imaging of an atomic Mott insulator , 2010, Nature.

[43]  Mark M. Wilde,et al.  Principles of Quantum Communication Theory: A Modern Approach , 2020, ArXiv.

[44]  V. Vedral,et al.  Entanglement in Many-Body Systems , 2007, quant-ph/0703044.

[45]  Fabio Sciarrino,et al.  Photonic Quantum Metrology , 2020 .

[46]  J. Ignacio Cirac,et al.  Quantum entanglement theory in the presence of superselection rules (15 pages) , 2004 .

[47]  K. Busch,et al.  Direct observation of the particle exchange phase of photons , 2020, Nature Photonics.

[48]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[49]  M. Greiner,et al.  Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level , 2010, Science.

[50]  M. Mitchell,et al.  Quantum-enhanced measurements without entanglement , 2017, Reviews of Modern Physics.

[51]  L. You,et al.  Quantum correlations in two-boson wave functions , 2001 .

[52]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[53]  M. Lewenstein,et al.  Quantum Correlations in Systems of Indistinguishable Particles , 2002, quant-ph/0203060.

[54]  Teleportation with indistinguishable particles , 2001, quant-ph/0102025.

[55]  I. Chuang,et al.  Fermionic measurement-based quantum computation , 2012, 1207.5846.

[56]  F. Benatti,et al.  Entanglement in algebraic quantum mechanics: Majorana fermion systems , 2016, 1605.08298.

[57]  On two misconceptions in current relativistic quantum information , 2011, 1108.5553.

[58]  R. L. Franco,et al.  Activating remote entanglement in a quantum network by local counting of identical particles , 2019, Physical Review A.

[59]  Wei Zhang,et al.  Implementing Unitary Operators with Decomposition into Diagonal Matrices of Transform Domains. , 2020 .

[60]  Gilad Gour,et al.  Entanglement manipulation beyond local operations and classical communication , 2020 .

[61]  U. Marzolino,et al.  Entanglement in indistinguishable particle systems , 2020 .

[62]  Thomas M. Stace,et al.  Quantum limits of thermometry , 2010, 1006.1447.

[63]  P. Würtz,et al.  Experimental demonstration of single-site addressability in a two-dimensional optical lattice. , 2009, Physical review letters.

[64]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[65]  Gerardo Adesso,et al.  Entanglement between Identical Particles Is a Useful and Consistent Resource , 2019 .

[66]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[67]  Ugo Marzolino,et al.  Locality and entanglement of indistinguishable particles , 2021, Scientific Reports.

[68]  F. Benatti,et al.  Entanglement and algebraic independence in fermion systems , 2014, 1405.5093.

[69]  F. Benatti,et al.  Sub-shot noise sensitivities without entanglement , 2011, 1109.0206.

[70]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[71]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[72]  J I Cirac,et al.  Nonlocal resources in the presence of superselection rules. , 2003, Physical review letters.

[73]  H. Narnhofer The role of transposition and CPT operation for entanglement , 2003 .

[74]  Rangamani Mukund,et al.  Holographic Entanglement Entropy , 2016, 1609.01287.

[75]  Yu Shi Quantum entanglement of identical particles , 2003 .

[76]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[77]  P. Zanardi,et al.  Virtual quantum subsystems. , 2001, Physical review letters.

[78]  P. Zanardi Quantum entanglement in fermionic lattices , 2002 .

[79]  U. Marzolino,et al.  Entanglement robustness and geometry in systems of identical particles , 2012, 1204.3746.