Comprehensive Model Simulation of Thermal Tides in the Martian Atmosphere

Abstract This paper discusses the thermotidal oscillations in simulations performed with a newly developed comprehensive general circulation model of the Martian atmosphere. With reasonable assumptions about the effective thermal inertia of the planetary surface and about the distribution of radiatively active atmospheric aerosol, the model produces both realistic zonal-mean temperature distributions and a diurnal surface pressure oscillation of at least roughly realistic amplitude. With any reasonable aerosol distribution, the simulated diurnal pressure oscillation has a very strong zonal variation, in particular a very pronounced zonal wavenumber-2 modulation. This results from a combination of the prominent wave-2 component in the important boundary forcings (topography and surface thermal inertia) and from the fact that the eastward-propagating zonal wave-1 Kelvin normal mode has a period near 1 sol (a Martian mean solar day of 88 775 s). The importance of global resonance is explicitly demonstrated w...