Nonparametric estimation of the spatio‐temporal covariance structure

Spatio-temporal modeling is an active research problem with broad applications. In this problem, proper description and estimation of the data covariance structure plays an important role. In the literature, most available methods assume that the data covariance is stationary and follows a specific parametric form. In practice, however, such assumptions are hardly valid or difficult to verify. In this paper, we propose a new and flexible method for estimating the underlying covariance structure. Our proposed method does not require the covariance to be stationary or follow a parametric form. It can accommodate nonparametric space-time-varying mean structure of the observed data. Under some mild regularity conditions, it is shown that our estimated covariance structure converges to the true covariance structure. The proposed method is also justified numerically by a simulation study and an application to a hand, foot, and mouth disease data.

[1]  Bo Li,et al.  Nonparametric Estimation of Spatial and Space-Time Covariance Function , 2013 .

[2]  Peihua Qiu,et al.  Spatiotemporal incidence rate data analysis by nonparametric regression , 2018, Statistics in medicine.

[3]  O. Linton,et al.  Nonparametric Estimation of a Periodic Sequence in the Presence of a Smooth Trend , 2012 .

[4]  P. Robinson,et al.  Nonparametric Estimation of Time-Varying Parameters , 1989 .

[5]  M. Genton Separable approximations of space‐time covariance matrices , 2007 .

[6]  Peter Guttorp,et al.  Continuous Parameter Spatio-Temporal Processes , 2010 .

[7]  R. Dahlhaus Fitting time series models to nonstationary processes , 1997 .

[8]  Naomi Altman,et al.  Kernel Smoothing of Data with Correlated Errors , 1990 .

[9]  Nan-Jung Hsu,et al.  A group lasso approach for non‐stationary spatial–temporal covariance estimation , 2012 .

[11]  Johan A. K. Suykens,et al.  Kernel Regression in the Presence of Correlated Errors , 2011, J. Mach. Learn. Res..

[12]  N. Cressie,et al.  Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .

[13]  Nicholas I. Fisher,et al.  On the Nonparametric Estimation of Covariance Functions , 1994 .

[14]  V. A. Epanechnikov Non-Parametric Estimation of a Multivariate Probability Density , 1969 .

[15]  Yuhong Yang,et al.  Nonparametric Regression with Correlated Errors , 2001 .

[16]  N. Higham COMPUTING A NEAREST SYMMETRIC POSITIVE SEMIDEFINITE MATRIX , 1988 .

[17]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .