Transsynaptic Modulation of Kainate Receptor Functions by C1q-like Proteins

[1]  P. Worley,et al.  Pentraxins Coordinate Excitatory Synapse Maturation and Circuit Integration of Parvalbumin Interneurons , 2016, Neuron.

[2]  Ivet Bahar,et al.  Cooperative Dynamics of Intact AMPA and NMDA Glutamate Receptors: Similarities and Subfamily-Specific Differences. , 2015, Structure.

[3]  I. Bahar,et al.  Structure, Dynamics, and Allosteric Potential of Ionotropic Glutamate Receptor N-Terminal Domains , 2015, Biophysical journal.

[4]  M. Zhen,et al.  MADD-4/Punctin and Neurexin Organize C. elegans GABAergic Postsynapses through Neuroligin , 2015, Neuron.

[5]  J. Bessereau,et al.  C. elegans Punctin Clusters GABAA Receptors via Neuroligin Binding and UNC-40/DCC Recruitment , 2015, Neuron.

[6]  M. Regan,et al.  Emerging structural insights into the function of ionotropic glutamate receptors. , 2015, Trends in biochemical sciences.

[7]  M. Kauffman,et al.  Expanding the spectrum of Grik2 mutations: intellectual disability, behavioural disorder, epilepsy and dystonia , 2015, Clinical genetics.

[8]  Soichi Nagao,et al.  Anterograde C1ql1 Signaling Is Required in Order to Determine and Maintain a Single-Winner Climbing Fiber in the Mouse Cerebellum , 2015, Neuron.

[9]  D. Schreiner,et al.  Targeted Combinatorial Alternative Splicing Generates Brain Region-Specific Repertoires of Neurexins , 2014, Neuron.

[10]  M. Farrant,et al.  Mapping the Interaction Sites between AMPA Receptors and TARPs Reveals a Role for the Receptor N-Terminal Domain in Channel Gating , 2014, Cell reports.

[11]  M. Hollmann,et al.  Trafficking of Kainate Receptors , 2014, Membranes.

[12]  C. Mulle,et al.  Contribution of aberrant GluK2-containing kainate receptors to chronic seizures in temporal lobe epilepsy. , 2014, Cell reports.

[13]  C. Mulle,et al.  Kainate receptors in the hippocampus , 2014, The European journal of neuroscience.

[14]  Thomas C. Südhof,et al.  Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing , 2014, Proceedings of the National Academy of Sciences.

[15]  M. Yuzaki,et al.  Stargazin regulates AMPA receptor trafficking through adaptor protein complexes during long-term depression , 2013, Nature Communications.

[16]  J. Lerma,et al.  Kainate Receptors in Health and Disease , 2013, Neuron.

[17]  T. Südhof,et al.  Membrane-Tethered Monomeric Neurexin LNS-Domain Triggers Synapse Formation , 2013, The Journal of Neuroscience.

[18]  M. Yuzaki,et al.  The δ2 glutamate receptor gates long-term depression by coordinating interactions between two AMPA receptor phosphorylation sites , 2013, Proceedings of the National Academy of Sciences.

[19]  B. Copits,et al.  Dancing partners at the synapse: auxiliary subunits that shape kainate receptor function , 2012, Nature Reviews Neuroscience.

[20]  J. Yates,et al.  Differences in AMPA and kainate receptor interactomes facilitate identification of AMPA receptor auxiliary subunit GSG1L. , 2012, Cell reports.

[21]  Uwe Schulte,et al.  High-Resolution Proteomics Unravel Architecture and Molecular Diversity of Native AMPA Receptor Complexes , 2012, Neuron.

[22]  T. Südhof,et al.  High Affinity Neurexin Binding to Cell Adhesion G-protein-coupled Receptor CIRL1/Latrophilin-1 Produces an Intercellular Adhesion Complex , 2012, The Journal of Biological Chemistry.

[23]  D. Pinto,et al.  Rare deletions at the neurexin 3 locus in autism spectrum disorder. , 2012, American journal of human genetics.

[24]  M. Mayer,et al.  Structure and Assembly Mechanism for Heteromeric Kainate Receptors , 2011, Neuron.

[25]  R. Mcinnes,et al.  Neto1 Is an Auxiliary Subunit of Native Synaptic Kainate Receptors , 2011, The Journal of Neuroscience.

[26]  Hiro Furukawa,et al.  Subunit Arrangement and Phenylethanolamine Binding in GluN1/GluN2B NMDA Receptors , 2011, Nature.

[27]  M. Yuzaki,et al.  D-Serine regulates cerebellar LTD and motor coordination through the δ2 glutamate receptor , 2011, Nature Neuroscience.

[28]  David L. Hunt,et al.  Unique functions of kainate receptors in the brain are determined by the auxiliary subunit Neto1 , 2011, Nature neuroscience.

[29]  M. Yuzaki,et al.  Cbln family proteins promote synapse formation by regulating distinct neurexin signaling pathways in various brain regions , 2011, The European journal of neuroscience.

[30]  M. Babu,et al.  Subunit‐selective N‐terminal domain associations organize the formation of AMPA receptor heteromers , 2011, The EMBO journal.

[31]  C. Mulle,et al.  Kainate receptors coming of age: milestones of two decades of research , 2011, Trends in Neurosciences.

[32]  T. Südhof,et al.  The cell-adhesion G protein-coupled receptor BAI3 is a high-affinity receptor for C1q-like proteins , 2011, Proceedings of the National Academy of Sciences.

[33]  H. Bading,et al.  Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders , 2010, Nature Reviews Neuroscience.

[34]  R. Dingledine,et al.  Glutamate Receptor Ion Channels: Structure, Regulation, and Function , 2010, Pharmacological Reviews.

[35]  B. Honig,et al.  Splice Form Dependence of β-Neurexin/Neuroligin Binding Interactions , 2010, Neuron.

[36]  T. Takeuchi,et al.  Trans-Synaptic Interaction of GluRδ2 and Neurexin through Cbln1 Mediates Synapse Formation in the Cerebellum , 2010, Cell.

[37]  Raika Pancaroglu,et al.  LRRTMs and Neuroligins Bind Neurexins with a Differential Code to Cooperate in Glutamate Synapse Development , 2010, The Journal of Neuroscience.

[38]  Masahiko Watanabe,et al.  Distinct expression of C1q‐like family mRNAs in mouse brain and biochemical characterization of their encoded proteins , 2010, The European journal of neuroscience.

[39]  Masahiko Watanabe,et al.  Cbln1 Is a Ligand for an Orphan Glutamate Receptor δ2, a Bidirectional Synapse Organizer , 2010, Science.

[40]  J. Kawai,et al.  Identification and characterization of nCLP2, a novel C1q family protein expressed in the central nervous system. , 2010, Journal of biochemistry.

[41]  Thomas C. Südhof,et al.  LRRTM2 Functions as a Neurexin Ligand in Promoting Excitatory Synapse Formation , 2009, Neuron.

[42]  J. Yates,et al.  LRRTM2 Interacts with Neurexin1 and Regulates Excitatory Synapse Formation , 2009, Neuron.

[43]  Masahiko Watanabe,et al.  NMDA Receptor GluN2B (GluRε2/NR2B) Subunit Is Crucial for Channel Function, Postsynaptic Macromolecular Organization, and Actin Cytoskeleton at Hippocampal CA3 Synapses , 2009, The Journal of Neuroscience.

[44]  Jon W. Johnson,et al.  Mechanism of differential control of NMDA receptor activity by NR2 subunits , 2009, Nature.

[45]  M. Yuzaki Cbln and C1q family proteins – New transneuronal cytokines , 2008, Cellular and Molecular Life Sciences.

[46]  G. Uhl,et al.  Neurexin 3 polymorphisms are associated with alcohol dependence and altered expression of specific isoforms. , 2007, Human molecular genetics.

[47]  Benjamin R. Rost,et al.  A defect in the ionotropic glutamate receptor 6 gene (GRIK2) is associated with autosomal recessive mental retardation. , 2007, American journal of human genetics.

[48]  R. Huganir,et al.  Interaction of the N-Terminal Domain of the AMPA Receptor GluR4 Subunit with the Neuronal Pentraxin NP1 Mediates GluR4 Synaptic Recruitment , 2007, Neuron.

[49]  R. Nicoll,et al.  Synaptic trafficking of glutamate receptors by MAGUK scaffolding proteins. , 2007, Trends in cell biology.

[50]  R. Rosenthal,et al.  Genomewide suggestive linkage of opioid dependence to chromosome 14q. , 2007, Human molecular genetics.

[51]  M. Passafaro,et al.  Extracellular Interactions between GluR2 and N-Cadherin in Spine Regulation , 2007, Neuron.

[52]  R. Huganir,et al.  Differential neuronal and glial expression of GluR1 AMPA receptor subunit and the scaffolding proteins SAP97 and 4.1N during rat cerebellar development , 2007, The Journal of comparative neurology.

[53]  Lars Funke,et al.  Synapse-Specific and Developmentally Regulated Targeting of AMPA Receptors by a Family of MAGUK Scaffolding Proteins , 2006, Neuron.

[54]  Weixian Lu,et al.  A time- and cost-efficient system for high-level protein production in mammalian cells. , 2006, Acta crystallographica. Section D, Biological crystallography.

[55]  Masahiko Watanabe,et al.  Distinct expression of Cbln family mRNAs in developing and adult mouse brains , 2006, The European journal of neuroscience.

[56]  P. Scheiffele,et al.  Alternative Splicing Controls Selective Trans-Synaptic Interactions of the Neuroligin-Neurexin Complex , 2006, Neuron.

[57]  Masahiko Watanabe,et al.  Cbln1 is essential for synaptic integrity and plasticity in the cerebellum , 2005, Nature Neuroscience.

[58]  Thomas C. Südhof,et al.  A Splice Code for trans-Synaptic Cell Adhesion Mediated by Binding of Neuroligin 1 to α- and β-Neurexins , 2005, Neuron.

[59]  Robert B Sim,et al.  C1q and tumor necrosis factor superfamily: modularity and versatility. , 2004, Trends in immunology.

[60]  M. Mishina,et al.  Conditional activation of RhoA suppresses the epithelial to mesenchymal transition at the primitive streak during mouse gastrulation. , 2004, Biochemical and biophysical research communications.

[61]  G. Collingridge,et al.  Rapid and Differential Regulation of AMPA and Kainate Receptors at Hippocampal Mossy Fibre Synapses by PICK1 and GRIP , 2003, Neuron.

[62]  Y. Stern-Bach,et al.  Functional Assembly of AMPA and Kainate Receptors Is Mediated by Several Discrete Protein-Protein Interactions , 2001, Neuron.

[63]  Roberto Malinow,et al.  Subunit-Specific Rules Governing AMPA Receptor Trafficking to Synapses in Hippocampal Pyramidal Neurons , 2001, Cell.

[64]  Michael E Greenberg,et al.  EphB Receptors Interact with NMDA Receptors and Regulate Excitatory Synapse Formation , 2000, Cell.

[65]  S. Heinemann,et al.  Identification of the Kainate Receptor Subunits Underlying Modulation of Excitatory Synaptic Transmission in the CA3 Region of the Hippocampus , 2000, The Journal of Neuroscience.

[66]  H. Kamiya,et al.  Kainate receptor‐mediated presynaptic inhibition at the mouse hippocampal mossy fibre synapse , 2000, The Journal of physiology.

[67]  Robert C. Malenka,et al.  Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons , 1997, Nature.

[68]  J. Sanes,et al.  Defective Neuromuscular Synaptogenesis in Agrin-Deficient Mutant Mice , 1996, Cell.

[69]  R. Petralia,et al.  Histological and ultrastructural localization of the kainate receptor subunits, KA2 and GluR6/7, in the rat nervous system using selective antipeptide antibodies , 1994, The Journal of comparative neurology.

[70]  D. Grabs,et al.  Differential Expression of Synaptophysin and Synaptoporin During Pre‐ and Postnatal Development of the Rat Hippocampal Network , 1994, The European journal of neuroscience.

[71]  Masahiko Watanabe,et al.  NMDA Receptor GluN 2 B ( GluR 2 / NR 2 B ) Subunit Is Crucial for Channel Function , Postsynaptic Macromolecular Organization , and Actin Cytoskeleton at Hippocampal CA 3 Synapses , 2016 .

[72]  T. Südhof,et al.  A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. , 2005, Neuron.

[73]  T. Bourgeron,et al.  Linkage and association of the glutamate receptor 6 gene with autism , 2002, Molecular Psychiatry.