Hydrocarbon generation and kinetics: A case study of Permian shales, India

[1]  S. G. Sahu,et al.  Using rock-eval S4Tpeak as thermal maturity proxy for shales , 2021 .

[2]  S. Nordeng,et al.  Combining Source Rock Kinetics and Vitrinite Reflectance in Source Rock Evaluation of the Bakken Formation, Williston Basin, USA , 2021, ACS omega.

[3]  B. Hazra,et al.  Critical insights from Rock-Eval analysis of vitrains , 2021 .

[4]  Yun-xian Zhang,et al.  Pyrolysis experiment and hydrocarbon generation potential of the Bayingebi 2 Formation in the Hari Sag, Yingen-Ejiqi Basin, China , 2021, Arabian Journal of Geosciences.

[5]  B. Hazra,et al.  Coal combustion analysis using Rock-Eval: importance of S4-Tpeak , 2020, Arabian Journal of Geosciences.

[6]  Chunqing Jiang,et al.  Source rock kinetics and petroleum generation history of the Upper Ordovician calcareous shales of the Hudson Bay Basin and surrounding areas , 2020, Fuel.

[7]  Chao Zhang,et al.  The linkage of nitrogen isotopic composition and depositional environment of black mudstones in the Upper Triassic Yanchang Formation, Ordos Basin, northern China , 2020 .

[8]  S. Sen,et al.  Cyclic Sedimentation in the Barakar Formation of the Karanpura Field, Marginal Gondwana Basin, India , 2020, Journal of the Geological Society of India.

[9]  S. Sen,et al.  A Field-scale Overview of Facies Architectures and Depositional Environment Integrating Core and Geophysical Log Data: Study from a Marginal Gondwana Basin, India , 2019, Journal of the Geological Society of India.

[10]  Yun-xian Zhang,et al.  Kerogen Pyrolysis Experiment and Hydrocarbon Generation Kinetics in the Dongpu Depression, Bohai Bay Basin, China , 2019, Energy & Fuels.

[11]  C. Karacan,et al.  Insights from Rock-Eval analysis on the influence of sample weight on hydrocarbon generation from Lower Permian organic matter rich rocks, West Bokaro basin, India , 2019, Marine and Petroleum Geology.

[12]  D. Wood Establishing credible reaction-kinetics distributions to fit and explain multi-heating rate S2 pyrolysis peaks of kerogens and shales , 2018, Advances in Geo-Energy Research.

[13]  D. Wood,et al.  Pyrolysis S2-peak characteristics of Raniganj shales (India) reflect complex combinations of kerogen kinetics and other processes related to different levels of thermal maturity , 2018, Advances in Geo-Energy Research.

[14]  S. Sen,et al.  Geophysical Log-based Coal Characterization of Middle Permian Barakar Formation from North Karanpura Coal Field, India , 2018, Journal of the Geological Society of India.

[15]  Yunpeng Wang,et al.  Kinetic study of marine and lacustrine shale grains using Rock-Eval pyrolysis: Implications to hydrocarbon generation, retention and expulsion , 2018 .

[16]  Zhenyu Li,et al.  Hydrocarbon Generation Kinetics of a Heterogeneous Source Rock System: Example from the Lacsutrine Eocene-Oligocene Shahejie Formation, Bohai Bay Basin, China , 2017 .

[17]  S. Inan,et al.  Oxidation Tmax: A new thermal maturity indicator for hydrocarbon source rocks , 2017 .

[18]  D. Wood,et al.  Characterization of organic-rich shales for petroleum exploration & exploitation: A review-Part 2: Geochemistry, thermal maturity, isotopes and biomarkers , 2017, Journal of Earth Science.

[19]  A. V. van Duin,et al.  From cellulose to kerogen: molecular simulation of a geological process† †Electronic supplementary information (ESI) available: Fig. S1–S6 and Tables S1 and S2. See DOI: 10.1039/c7sc03466k , 2017, Chemical science.

[20]  Chunqing Jiang,et al.  Inversion of source rock hydrocarbon generation kinetics from Rock-Eval data , 2017 .

[21]  Xiaojun Liu,et al.  Quick Evaluation of Source Rock Kerogen Kinetics Using Hydrocarbon Pyrograms from Regular Rock-Eval Analysis , 2017 .

[22]  Sunil Kumar,et al.  TOC calculation of organic matter rich sediments using Rock-Eval pyrolysis: Critical consideration and insights , 2017 .

[23]  Chunqing Jiang,et al.  Model-assisted Rock-Eval data interpretation for source rock evaluation: Examples from producing and potential shale gas resource plays , 2016 .

[24]  B. Cardott,et al.  Application of organic petrography in North American shale petroleum systems: A review , 2016 .

[25]  B. Garcia,et al.  New Rock-Eval Method for Characterization of Unconventional Shale Resource Systems , 2016 .

[26]  H. Volk,et al.  Petroleum potential and kinetic models for hydrocarbon generation from the Upper Cretaceous to Paleogene Latrobe Group coals and shales in the Gippsland Basin, Australia , 2016 .

[27]  T. Gentzis,et al.  Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: Data quality revisited , 2015 .

[28]  V. K. Saxena,et al.  Petrographic insights of organic matter conversion of Raniganj basin shales, India , 2015 .

[29]  A. Varma,et al.  Assessment of organic richness and hydrocarbon generation potential of Raniganj basin shales, West Bengal, India , 2015 .

[30]  A. Varma,et al.  Methane Sorption dynamics and hydrocarbon generation of shale samples from West Bokaro and Raniganj basins, India , 2014 .

[31]  B. Horsfield,et al.  Hydrocarbon Generation Kinetics of Lacustrine Yanchang Shale in Southeast Ordos Basin, North China , 2014 .

[32]  T. Gentzis A review of the thermal maturity and hydrocarbon potential of the Mancos and Lewis shales in parts of New Mexico, USA , 2013 .

[33]  M. Guarnone,et al.  An unconventional mindset for shale gas surface facilities , 2012 .

[34]  Wang Min,et al.  Kinetic simulation of hydrocarbon generation from lacustrine type I kerogen from the Songliao Basin: Model comparison and geological application , 2011 .

[35]  Prabir Kumar Parui,et al.  Stratigraphic correlation between different Gondwana Basins of India , 2010 .

[36]  Qin Jianzhong,et al.  Kinetics of the hydrocarbon generation process of marine source rocks in South China , 2010 .

[37]  A. Aboulkas,et al.  STUDY OF THE KINETICS AND MECHANISMS OF THERMAL DECOMPOSITION OF MOROCCAN TARFAYA OIL SHALE AND ITS KEROGEN , 2008 .

[38]  C. Largeau,et al.  Kerogen origin, evolution and structure , 2007 .

[39]  D. Jarvie,et al.  Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment , 2007 .

[40]  P. Mankiewicz,et al.  Evaluation of kinetic uncertainty in numerical models of petroleum generation , 2006 .

[41]  B. Cardott,et al.  Classification of huminite—ICCP System 1994 , 2005 .

[42]  V. Dieckmann Modelling petroleum formation from heterogeneous source rocks: the influence of frequency factors on activation energy distribution and geological prediction , 2005 .

[43]  S. C Ghosh,et al.  The Raniganj Coal Basin: an example of an Indian Gondwana rift , 2002 .

[44]  F. Behar,et al.  Rock-Eval 6 Technology: Performances and Developments , 2001 .

[45]  Abir Gupta Early Permian Palaeoenvironment in Damodar Valley Coalfields, India: an Overview , 1999 .

[46]  F. Marquis,et al.  Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies , 1998 .

[47]  K. Peters Rock-eval pyrolysis , 1998 .

[48]  Sam Boggs,et al.  Petrology of sedimentary rocks , 1991 .

[49]  D. Welte,et al.  Petroleum Formation and Occurrence , 1989 .

[50]  D. Wood Relationships Between Thermal Maturity Indices Calculated Using Arrhenius Equation and Lopatin Method: Implications for Petroleum Exploration , 1988 .

[51]  F. Behar,et al.  Chemical modelling of kerogens , 1987 .

[52]  J. Espitalie,et al.  La pyrolyse Rock-Eval et ses applications. Première partie. , 1985 .

[53]  J. Espitalie,et al.  Méthode rapide de caractérisation des roches mètres, de leur potentiel pétrolier et de leur degré d'évolution , 1977 .