Composite modeling and parameter identification of broad bandwidth hysteretic dynamics in piezoelectric fast steering platform

Abstract Over a broadband range of frequencies, it is difficult to develop precise model of piezoelectric fast steering platforms (FSPs) due to the complex hysteretic and dynamic behaviors. This paper thus presents one approach of composite modeling and parameter identification by employing a composite hysteretic model. The proposed composite model consists of the Bouc-Wen hysteresis, electro-mechanical dynamics, creep dynamics and the high frequency mirror dynamics. Physical meanings can be found in the linear component which is beneficial to controller design and other further developments using the proposed model. A step-by-step approach is proposed to identify the composite hysteretic model. Finally, the FSP experiment is provided to validate the effectiveness of the proposed modeling and parameter identification approaches.

[1]  Si-Lu Chen,et al.  Development of an Approach Toward Comprehensive Identification of Hysteretic Dynamics in Piezoelectric Actuators , 2013, IEEE Transactions on Control Systems Technology.

[2]  J.A. De Abreu-Garcia,et al.  Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model , 2005, IEEE/ASME Transactions on Mechatronics.

[3]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[4]  Si-Lu Chen,et al.  Discrete Composite Control of Piezoelectric Actuators for High-Speed and Precision Scanning , 2013, IEEE Transactions on Industrial Informatics.

[5]  Li-Min Zhu,et al.  Modeling and Identification of Piezoelectric-Actuated Stages Cascading Hysteresis Nonlinearity With Linear Dynamics , 2016, IEEE/ASME Transactions on Mechatronics.

[6]  Alina Voda,et al.  Subnanometer Positioning and Drift Compensation With Tunneling Current , 2014, IEEE Transactions on Control Systems Technology.

[7]  Sergej Fatikow,et al.  Modeling and Control of Piezo-Actuated Nanopositioning Stages: A Survey , 2016, IEEE Transactions on Automation Science and Engineering.

[8]  Wei Li,et al.  Compensation of hysteresis in piezoelectric actuators without dynamics modeling , 2013 .

[9]  L. E. Malvern Introduction to the mechanics of a continuous medium , 1969 .

[10]  Han Ding,et al.  Motion Control of Piezoelectric Positioning Stages: Modeling, Controller Design, and Experimental Evaluation , 2013, IEEE/ASME Transactions on Mechatronics.

[11]  F. Ikhouane,et al.  Systems with Hysteresis: Analysis, Identification and Control Using the Bouc-Wen Model , 2007 .

[12]  Fuzhong Bai,et al.  High-speed and precision control of a piezoelectric positioner with hysteresis, resonance and disturbance compensation , 2016 .

[13]  Yanding Qin,et al.  Modeling and Identification of the Rate-Dependent Hysteresis of Piezoelectric Actuator Using a Modified Prandtl-Ishlinskii Model , 2017, Micromachines.

[14]  Ivan B. Djordjevic,et al.  Deep-Space Optical Communications: Future Perspectives and Applications , 2011, Proceedings of the IEEE.

[15]  Peng Yan,et al.  Robust adaptive backstepping control for piezoelectric nano-manipulating systems ☆ , 2017 .

[16]  Micky Rakotondrabe Classical Prandtl-Ishlinskii modeling and inverse multiplicative structure to compensate hysteresis in piezoactuators , 2012, 2012 American Control Conference (ACC).

[17]  S O Reza Moheimani,et al.  Invited review article: accurate and fast nanopositioning with piezoelectric tube scanners: emerging trends and future challenges. , 2008, The Review of scientific instruments.

[18]  Yufei Xu,et al.  Modeling and identification investigation of multi-field hysteretic dynamics in flexure-guided piezo platform , 2015 .

[19]  Mohammed Ismail,et al.  The Hysteresis Bouc-Wen Model, a Survey , 2009 .

[20]  S. T. Mau,et al.  Systems Identification of Degrading Hysteretic Restoring Forces , 1988 .

[21]  Xinkai Chen,et al.  Adaptive Sliding-Mode Position Control for Piezo-Actuated Stage , 2008, IEEE Transactions on Industrial Electronics.

[22]  Nagi G. Naganathan,et al.  Dynamic Preisach modelling of hysteresis for the piezoceramic actuator system , 2001 .

[23]  Shaomin Xiong,et al.  Hard Disk Drive Servo System Based on Field-Programmable Gate Arrays , 2014, IEEE Transactions on Industrial Electronics.

[24]  M.K. Masten,et al.  Inertially stabilized platforms for optical imaging systems , 2008, IEEE Control Systems.

[25]  Y. Shan,et al.  Design and Control for High-Speed Nanopositioning: Serial-Kinematic Nanopositioners and Repetitive Control for Nanofabrication , 2013, IEEE Control Systems.

[26]  Qingsong Xu,et al.  Hysteresis modeling and compensation of a piezostage using least squares support vector machines , 2011 .

[27]  Petr Klapetek,et al.  Short-Range Six-Axis Interferometer Controlled Positioning for Scanning Probe Microscopy , 2014, Sensors.

[28]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.