Molecular determinants that regulate plasma membrane association of HIV-1 Gag.

[1]  Frank Heinrich,et al.  HIV-1 Gag extension: conformational changes require simultaneous interaction with membrane and nucleic acid. , 2011, Journal of molecular biology.

[2]  V. Chukkapalli,et al.  Gag Localization and Virus-Like Particle Release Mediated by the Matrix Domain of Human T-Lymphotropic Virus Type 1 Gag Are Less Dependent on Phosphatidylinositol-(4,5)-Bisphosphate than Those Mediated by the Matrix Domain of HIV-1 Gag , 2011, Journal of Virology.

[3]  N. Tjandra,et al.  Phosphoinositides Direct Equine Infectious Anemia Virus Gag Trafficking and Release , 2011, Traffic.

[4]  V. Chukkapalli,et al.  Assembly and Replication of HIV-1 in T Cells with Low Levels of Phosphatidylinositol-(4,5)-Bisphosphate , 2011, Journal of Virology.

[5]  K. Musier-Forsyth,et al.  Matrix Domain Modulates HIV-1 Gag's Nucleic Acid Chaperone Activity via Inositol Phosphate Binding , 2010, Journal of Virology.

[6]  P. Prevelige,et al.  Myristate exposure in the human immunodeficiency virus type 1 matrix protein is modulated by pH. , 2010, Biochemistry.

[7]  A. Rein,et al.  RNA Aptamers Directed to Human Immunodeficiency Virus Type 1 Gag Polyprotein Bind to the Matrix and Nucleocapsid Domains and Inhibit Virus Production , 2010, Journal of Virology.

[8]  J. Saad,et al.  Binding of Calmodulin to the HIV-1 Matrix Protein Triggers Myristate Exposure* , 2010, The Journal of Biological Chemistry.

[9]  D. Bunka,et al.  Development of aptamer therapeutics. , 2010, Current opinion in pharmacology.

[10]  A. Ono,et al.  Nucleocapsid Promotes Localization of HIV-1 Gag to Uropods That Participate in Virological Synapses between T Cells , 2010, PLoS pathogens.

[11]  O. Schwartz,et al.  HIV-1 Virological Synapse: Live Imaging of Transmission , 2010, Viruses.

[12]  M. Otsuka,et al.  Highly sensitive analysis of the interaction between HIV-1 Gag and phosphoinositide derivatives based on surface plasmon resonance. , 2010, Biochemistry.

[13]  Q. Sattentau,et al.  Cell-to-Cell Spread of Retroviruses , 2010, Viruses.

[14]  A. Ono,et al.  Relationships between plasma membrane microdomains and HIV‐1 assembly , 2010, Biology of the cell.

[15]  C. Jolly T Cell Polarization at the Virological Synapse , 2010, Viruses.

[16]  M. Bewley,et al.  Directionality of nucleocytoplasmic transport of the retroviral gag protein depends on sequential binding of karyopherins and viral RNA , 2010, Proceedings of the National Academy of Sciences.

[17]  K. Mikoshiba,et al.  Activation of the Inositol (1,4,5)-Triphosphate Calcium Gate Receptor Is Required for HIV-1 Gag Release , 2010, Journal of Virology.

[18]  Nathan M. Sherer,et al.  Virus Cell-to-Cell Transmission , 2010, Journal of Virology.

[19]  M. Wright,et al.  Protein myristoylation in health and disease , 2010, Journal of chemical biology.

[20]  A. Wand,et al.  Reverse micelle encapsulation of membrane-anchored proteins for solution NMR studies. , 2010, Structure.

[21]  V. Chukkapalli,et al.  Opposing mechanisms involving RNA and lipids regulate HIV-1 Gag membrane binding through the highly basic region of the matrix domain , 2010, Proceedings of the National Academy of Sciences.

[22]  P. Roingeard,et al.  Targeting of Murine Leukemia Virus Gag to the Plasma Membrane Is Mediated by PI(4,5)P2/PS and a Polybasic Region in the Matrix , 2009, Journal of Virology.

[23]  E. Barklis,et al.  Analysis of Human Immunodeficiency Virus Type 1 Matrix Binding to Membranes and Nucleic Acids , 2009, Journal of Virology.

[24]  Donald Bliss,et al.  Ion-Abrasion Scanning Electron Microscopy Reveals Surface-Connected Tubular Conduits in HIV-Infected Macrophages , 2009, PLoS pathogens.

[25]  T. Sturgeon,et al.  HIV-1 Matrix Dependent Membrane Targeting Is Regulated by Gag mRNA Trafficking , 2009, PloS one.

[26]  E. Freed,et al.  Lipids and membrane microdomains in HIV-1 replication. , 2009, Virus research.

[27]  T. Balla,et al.  Phosphoinositide signaling: new tools and insights. , 2009, Physiology.

[28]  M. Malim,et al.  Matrix Mediates the Functional Link between Human Immunodeficiency Virus Type 1 RNA Nuclear Export Elements and the Assembly Competency of Gag in Murine Cells , 2009, Journal of Virology.

[29]  E. Barklis,et al.  HIV-1 matrix organizes as a hexamer of trimers on membranes containing phosphatidylinositol-(4,5)-bisphosphate. , 2009, Virology.

[30]  A. Ono,et al.  HIV-1 Assembly at the Plasma Membrane: Gag Trafficking and Localization. , 2009, Future virology.

[31]  S. Guadagnini,et al.  Simultaneous Cell-to-Cell Transmission of Human Immunodeficiency Virus to Multiple Targets through Polysynapses , 2009, Journal of Virology.

[32]  Frank Y. S. Chuang,et al.  Quantitative 3D Video Microscopy of HIV Transfer Across T Cell Virological Synapses , 2009, Science.

[33]  K. Nagashima,et al.  Evidence that Productive Human Immunodeficiency Virus Type 1 Assembly Can Occur in an Intracellular Compartment , 2009, Journal of Virology.

[34]  Q. Sattentau,et al.  Avoiding the void: cell-to-cell spread of human viruses , 2008, Nature Reviews Microbiology.

[35]  K. Nagashima,et al.  Structure of the myristylated human immunodeficiency virus type 2 matrix protein and the role of phosphatidylinositol-(4,5)-bisphosphate in membrane targeting. , 2008, Journal of molecular biology.

[36]  P. Uchil,et al.  Retroviruses Human Immunodeficiency Virus and Murine Leukemia Virus Are Enriched in Phosphoinositides , 2008, Journal of Virology.

[37]  Yu-Fen Chang,et al.  HIV-1 matrix protein repositioning in nucleocapsid region fails to confer virus-like particle assembly , 2008, Virology.

[38]  M. Lemmon,et al.  Membrane recognition by phospholipid-binding domains , 2008, Nature Reviews Molecular Cell Biology.

[39]  D. Jans,et al.  The N-terminal basic domain of the HIV-1 matrix protein does not contain a conventional nuclear localization sequence but is required for DNA binding and protein self-association. , 2008, Biochemistry.

[40]  N. Tjandra,et al.  Solution NMR characterizations of oligomerization and dynamics of equine infectious anemia virus matrix protein and its interaction with PIP2. , 2008, Biochemistry.

[41]  Wei-Shau Hu,et al.  Interaction between the Human Immunodeficiency Virus Type 1 Gag Matrix Domain and Phosphatidylinositol-(4,5)-Bisphosphate Is Essential for Efficient Gag Membrane Binding , 2007, Journal of Virology.

[42]  W. Hübner,et al.  Predominant Mode of Human Immunodeficiency Virus Transfer between T Cells Is Mediated by Sustained Env-Dependent Neutralization-Resistant Virological Synapses , 2007, Journal of Virology.

[43]  E. Hunter,et al.  Basic Residues in the Mason-Pfizer Monkey Virus Gag Matrix Domain Regulate Intracellular Trafficking and Capsid-Membrane Interactions , 2007, Journal of Virology.

[44]  E. Ruiz-Mateos,et al.  In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53 , 2007, The Journal of cell biology.

[45]  D. Jans,et al.  Regulating the functions of the HIV-1 matrix protein. , 2007, AIDS research and human retroviruses.

[46]  E. Freed,et al.  Depletion of cellular cholesterol inhibits membrane binding and higher-order multimerization of human immunodeficiency virus type 1 Gag. , 2007, Virology.

[47]  V. Vogt,et al.  Electrostatic Interactions Drive Membrane Association of the Human Immunodeficiency Virus Type 1 Gag MA Domain , 2007, Journal of Virology.

[48]  H. Kräusslich,et al.  HIV-1 Buds Predominantly at the Plasma Membrane of Primary Human Macrophages , 2007, PLoS pathogens.

[49]  M. Summers,et al.  Point mutations in the HIV-1 matrix protein turn off the myristyl switch. , 2007, Journal of molecular biology.

[50]  P. Clark,et al.  Interactions between HIV-1 Gag molecules in solution: an inositol phosphate-mediated switch. , 2007, Journal of molecular biology.

[51]  Joseph E Curtis,et al.  Conformation of the HIV-1 Gag protein in solution. , 2007, Journal of molecular biology.

[52]  Marc C. Johnson,et al.  Plasma Membrane Is the Site of Productive HIV-1 Particle Assembly , 2006, PLoS biology.

[53]  E. Barklis,et al.  Human Immunodeficiency Virus Type 1 Matrix Protein Assembles on Membranes as a Hexamer , 2006, Journal of Virology.

[54]  M. Resh,et al.  Trafficking and signaling by fatty-acylated and prenylated proteins , 2006, Nature chemical biology.

[55]  M. Summers,et al.  Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[56]  A. Rein,et al.  Interactions of HIV-1 Gag with assembly cofactors. , 2006, Biochemistry.

[57]  D. Murray,et al.  Plasma membrane phosphoinositide organization by protein electrostatics , 2005, Nature.

[58]  D. Ott,et al.  Redundant Roles for Nucleocapsid and Matrix RNA-Binding Sequences in Human Immunodeficiency Virus Type 1 Assembly , 2005, Journal of Virology.

[59]  Barry Honig,et al.  Retroviral matrix domains share electrostatic homology: models for membrane binding function throughout the viral life cycle. , 2005, Structure.

[60]  Diana Murray,et al.  Biochemical Characterization of Rous Sarcoma Virus MA Protein Interaction with Membranes , 2005, Journal of Virology.

[61]  C. Downes,et al.  Probing phosphoinositide functions in signaling and membrane trafficking. , 2005, Trends in cell biology.

[62]  K. Nagashima,et al.  Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[63]  D. Pérez-Caballero,et al.  Human Immunodeficiency Virus Type 1 Matrix Inhibits and Confers Cooperativity on Gag Precursor-Membrane Interactions , 2004, Journal of Virology.

[64]  I. Jones,et al.  The molecular basis of HIV capsid assembly—five years of progress , 2004, Reviews in medical virology.

[65]  E. Freed,et al.  Cell-Type-Dependent Targeting of Human Immunodeficiency Virus Type 1 Assembly to the Plasma Membrane and the Multivesicular Body , 2004, Journal of Virology.

[66]  Clare Jolly,et al.  HIV-1 Cell to Cell Transfer across an Env-induced, Actin-dependent Synapse , 2004, The Journal of experimental medicine.

[67]  M. Summers,et al.  Entropic switch regulates myristate exposure in the HIV-1 matrix protein. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Huating Wang,et al.  Involvement of the Matrix and Nucleocapsid Domains of the Bovine Leukemia Virus Gag Polyprotein Precursor in Viral RNA Packaging , 2003, Journal of Virology.

[69]  Y. Aikawa,et al.  ARF6 regulates a plasma membrane pool of phosphatidylinositol(4,5)bisphosphate required for regulated exocytosis , 2003, The Journal of cell biology.

[70]  D. Graham,et al.  Lipid rafts and HIV pathogenesis: virion-associated cholesterol is required for fusion and infection of susceptible cells. , 2003, AIDS research and human retroviruses.

[71]  Mitsuhiro Osame,et al.  Spread of HTLV-I Between Lymphocytes by Virus-Induced Polarization of the Cytoskeleton , 2003, Science.

[72]  O. W. Lindwasser,et al.  Myristoylation as a target for inhibiting HIV assembly: Unsaturated fatty acids block viral budding , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[73]  N. Landau,et al.  Chimeric Human Immunodeficiency Virus Type 1 Containing Murine Leukemia Virus Matrix Assembles in Murine Cells , 2002, Journal of Virology.

[74]  Benjamin K. Chen,et al.  Efficient assembly of an HIV-1/MLV Gag-chimeric virus in murine cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[75]  E. Freed,et al.  Plasma membrane rafts play a critical role in HIV-1 assembly and release , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[76]  T. Balla,et al.  Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic , 2001, The Journal of cell biology.

[77]  H. Issaq,et al.  Modulation of HIV-like particle assembly in vitro by inositol phosphates , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[78]  B. Seed,et al.  Lipid Rafts and Pseudotyping , 2001, Journal of Virology.

[79]  J. Hancock,et al.  Compartmentalization of Ras proteins. , 2001, Journal of cell science.

[80]  M. Green,et al.  Sequence-specific interaction between HIV-1 matrix protein and viral genomic RNA revealed by in vitro genetic selection. , 2001, RNA.

[81]  L. Parent,et al.  trans-Acting Inhibition of Genomic RNA Dimerization by Rous Sarcoma Virus Matrix Mutants , 2001, Journal of Virology.

[82]  B. Cullen,et al.  Multiple Blocks to Human Immunodeficiency Virus Type 1 Replication in Rodent Cells , 2000, Journal of Virology.

[83]  M. Resh,et al.  Localization of Human Immunodeficiency Virus Type 1 Gag and Env at the Plasma Membrane by Confocal Imaging , 2000, Journal of Virology.

[84]  P. Majerus,et al.  The Isolation and Characterization of a cDNA Encoding Phospholipid-specific Inositol Polyphosphate 5-Phosphatase* , 2000, The Journal of Biological Chemistry.

[85]  T. Hope,et al.  A Block to Human Immunodeficiency Virus Type 1 Assembly in Murine Cells , 2000, Journal of Virology.

[86]  E. Freed,et al.  Role of the Gag Matrix Domain in Targeting Human Immunodeficiency Virus Type 1 Assembly , 2000, Journal of Virology.

[87]  Tina M. Cairns,et al.  RNA Dimerization Defect in a Rous Sarcoma Virus Matrix Mutant , 2000, Journal of Virology.

[88]  J. Luban,et al.  Translation Elongation Factor 1-Alpha Interacts Specifically with the Human Immunodeficiency Virus Type 1 Gag Polyprotein , 1999, Journal of Virology.

[89]  E. Freed,et al.  Binding of Human Immunodeficiency Virus Type 1 Gag to Membrane: Role of the Matrix Amino Terminus , 1999, Journal of Virology.

[90]  J. Paillart,et al.  Opposing Effects of Human Immunodeficiency Virus Type 1 Matrix Mutations Support a Myristyl Switch Model of Gag Membrane Targeting , 1999, Journal of Virology.

[91]  M. Resh,et al.  Human Immunodeficiency Virus Type 1 Protease Triggers a Myristoyl Switch That Modulates Membrane Binding of Pr55gag and p17MA , 1999, Journal of Virology.

[92]  Chin-Tien Wang,et al.  Analysis of Minimal Human Immunodeficiency Virus Type 1 gag Coding Sequences Capable of Virus-Like Particle Assembly and Release , 1998, Journal of Virology.

[93]  R. Leventis,et al.  Lipid-binding characteristics of the polybasic carboxy-terminal sequence of K-ras4B. , 1998, Biochemistry.

[94]  H. Gelderblom,et al.  Efficient HIV‐1 replication can occur in the absence of the viral matrix protein , 1998, The EMBO journal.

[95]  E. Freed,et al.  Role of Matrix in an Early Postentry Step in the Human Immunodeficiency Virus Type 1 Life Cycle , 1998, Journal of Virology.

[96]  P. Spearman,et al.  The I Domain Is Required for Efficient Plasma Membrane Binding of Human Immunodeficiency Virus Type 1 Pr55Gag , 1998, Journal of Virology.

[97]  Roger L. Williams,et al.  Replacements of Single Basic Amino Acids in the Pleckstrin Homology Domain of Phospholipase C-δ1 Alter the Ligand Binding, Phospholipase Activity, and Interaction with the Plasma Membrane* , 1998, The Journal of Biological Chemistry.

[98]  L. Ratner,et al.  Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism , 1997, Journal of virology.

[99]  S. Misumi,et al.  Blockage of N-myristoylation of HIV-1 gag induces the production of impotent progeny virus. , 1997, Biochemical and biophysical research communications.

[100]  T. Parslow,et al.  In vitro selection of RNAs that bind to the human immunodeficiency virus type-1 gag polyprotein. , 1997, Nucleic acids research.

[101]  E. Freed,et al.  Characterization of human immunodeficiency virus type 1 matrix revertants: effects on virus assembly, Gag processing, and Env incorporation into virions , 1997, Journal of virology.

[102]  M. Resh,et al.  Differential membrane binding of the human immunodeficiency virus type 1 matrix protein , 1996, Journal of virology.

[103]  W. Sundquist,et al.  Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[104]  Y. Morikawa,et al.  Complete Inhibition of Human Immunodeficiency Virus Gag Myristoylation Is Necessary for Inhibition of Particle Budding (*) , 1996, The Journal of Biological Chemistry.

[105]  W. Sundquist,et al.  Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein. , 1994, Journal of molecular biology.

[106]  M. Linial,et al.  Efficient particle formation can occur if the matrix domain of human immunodeficiency virus type 1 Gag is substituted by a myristylation signal , 1994, Journal of virology.

[107]  E. Freed,et al.  Single amino acid changes in the human immunodeficiency virus type 1 matrix protein block virus particle production , 1994, Journal of virology.

[108]  M. Resh,et al.  Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids , 1994, Journal of virology.

[109]  E. Barklis,et al.  Conditional infectivity of a human immunodeficiency virus matrix domain deletion mutant , 1993, Journal of virology.

[110]  X. Yu,et al.  Mutations in the N-terminal region of human immunodeficiency virus type 1 matrix protein block intracellular transport of the Gag precursor , 1993, Journal of virology.

[111]  J. Gordon,et al.  Incorporation of 12-methoxydodecanoate into the human immunodeficiency virus 1 gag polyprotein precursor inhibits its proteolytic processing and virus production in a chronically infected human lymphoid cell line. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[112]  J. Gordon,et al.  Replication of human immunodeficiency virus 1 and Moloney murine leukemia virus is inhibited by different heteroatom-containing analogs of myristic acid. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[113]  J. Sodroski,et al.  Role of capsid precursor processing and myristoylation in morphogenesis and infectivity of human immunodeficiency virus type 1. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[114]  H. Chu,et al.  Human immunodeficiency virus type-1 gag and host vesicular trafficking pathways. , 2009, Current topics in microbiology and immunology.

[115]  E. Freed,et al.  Human immunodeficiency virus type 1 assembly, release, and maturation. , 2007, Advances in pharmacology.

[116]  P. De Camilli,et al.  Phosphoinositides in cell regulation and membrane dynamics , 2006, Nature.

[117]  P. Quinn Plasma membrane phospholipid asymmetry. , 2002, Sub-cellular biochemistry.

[118]  A. Aderem,et al.  The my stoyl--electrostatic switch: a modu|ator of reve ib e protein-memb e interactions , 1995 .

[119]  L. Ratner,et al.  Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[120]  M. Ozel,et al.  Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins. , 1987, Virology.