A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells

Abstract This paper proposes a novel three-point based parameter extraction method for the single diode model. Unlike conventional curve-fitting procedures, the solution is simplistic yet exhibits outstanding ability to locate highly accurate solutions within very low number of iterations. The main idea is to establish three geometrically critical data points as the pivot points. By forcing the model to pass though these points exactly, the evolutionary algorithm (in this case differential evolution) is only utilized to fine-tune the remaining sections of the curve for best fit. As a result, the complexity of the algorithm is greatly reduced. A set of comparisons based on four case studies indicates that the proposed method substantially more accurate than other documented methods. Additionally, other tests with different types of photovoltaic modules (i.e. monocrystalline, polycrystalline, and thin film) at varying environmental conditions prove that the algorithm is reliable and practical for real-world applications. Besides, the scheme is highly efficient—it converges to the optimal solution in less than 50 iterations. Moreover, the solutions obtained are exceptionally consistent, i.e. the standard deviation of the root-mean-square error over 35 runs is at least 4 orders of magnitude less than those reported in other works. With these merits, the proposed method is envisaged to be valuable for both offline analysis and online monitoring applications where an accurate, fast and consistent parameter extraction tool is required.

[1]  Z. Salam,et al.  An Accurate and Fast Computational Algorithm for the Two-diode Model of PV Module Based on a Hybrid Method , 2017, IEEE Transactions on Industrial Electronics.

[2]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[3]  Giuseppe Marco Tina,et al.  Comparison of different metaheuristic algorithms for parameter identification of photovoltaic cell/module , 2013 .

[4]  Heng Wang,et al.  Parameter extraction of solar cell models using improved shuffled complex evolution algorithm , 2018, Energy Conversion and Management.

[5]  Chuanzhong Xu,et al.  Lumped-Parameter Equivalent Circuit Model for S-Shaped Current–Voltage Characteristics of Organic Solar Cells , 2019, IEEE Transactions on Electron Devices.

[6]  Joseph Appelbaum,et al.  Estimation of multi‐junction solar cell parameters , 2012 .

[7]  Zhicong Chen,et al.  Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm , 2017 .

[8]  Marcello Artioli,et al.  Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis , 2010 .

[9]  Prudence W. H. Wong,et al.  Parameter Estimation of Photovoltaic Models via Cuckoo Search , 2013, J. Appl. Math..

[10]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[11]  Alireza Rezazadeh,et al.  Extraction of maximum power point in solar cells using bird mating optimizer-based parameters identification approach , 2013 .

[12]  D. Chan,et al.  Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics , 1987, IEEE Transactions on Electron Devices.

[13]  Bin Xu,et al.  Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation , 2018 .

[14]  Mohamed Abd Elaziz,et al.  Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm , 2018, Energy Conversion and Management.

[15]  Wenyin Gong,et al.  Parameter extraction of solar cell models using repaired adaptive differential evolution , 2013 .

[16]  K. Ebihara,et al.  Estimation of equivalent circuit parameters of PV module and its application to optimal operation of PV system , 2001 .

[17]  Kay-Soon Low,et al.  Photovoltaic Model Identification Using Particle Swarm Optimization With Inverse Barrier Constraint , 2012, IEEE Transactions on Power Electronics.

[18]  Wenxiang Zhao,et al.  Parameters identification of solar cell models using generalized oppositional teaching learning based optimization , 2016 .

[19]  Lijun Wu,et al.  Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm , 2018, Applied Energy.

[20]  Lei Guo,et al.  Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm , 2016 .

[21]  J. A. Gow,et al.  Development of a photovoltaic array model for use in power-electronics simulation studies , 1999 .

[22]  Wei Chen,et al.  An iterative approach for modeling photovoltaic modules without implicit equations , 2017 .

[23]  Wei Han,et al.  Parameters Identification for Photovoltaic Module Based on an Improved Artificial Fish Swarm Algorithm , 2014, TheScientificWorldJournal.

[24]  Saad Mekhilef,et al.  Parameter extraction of solar photovoltaic modules using penalty-based differential evolution , 2012 .

[25]  F. Dkhichi,et al.  Parameter identification of solar cell model using Levenberg–Marquardt algorithm combined with simulated annealing , 2014 .

[26]  N. Rajasekar,et al.  Analysis on solar PV emulators: A review , 2018 .

[27]  Mohammad Yusri Hassan,et al.  Artificial neural network‐based photovoltaic module temperature estimation for tropical climate of Malaysia and its impact on photovoltaic system energy yield , 2015 .

[28]  F. Fred Choobineh,et al.  Optimal sizing of a nonutility-scale solar power system and its battery storage , 2018 .

[29]  J. Jervase,et al.  Solar cell parameter extraction using genetic algorithms , 2001 .

[30]  Kashif Ishaque,et al.  Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review , 2015 .

[31]  N. Park,et al.  Effect of Temperature and Humidity on the Degradation Rate of Multicrystalline Silicon Photovoltaic Module , 2013 .

[32]  A. Kapoor,et al.  A new approach to study organic solar cell using Lambert W-function , 2005 .

[33]  Mehdi Bigdeli,et al.  Very accurate parameter estimation of single- and double-diode solar cell models using a modified artificial bee colony algorithm , 2016 .

[34]  Nasrudin Abd Rahim,et al.  Solar cell parameters identification using hybrid Nelder-Mead and modified particle swarm optimization , 2016 .

[35]  Diego Oliva,et al.  Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm , 2017 .

[36]  Jing Liang,et al.  Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models , 2018, Applied Energy.

[37]  Kashif Ishaque,et al.  A critical evaluation of EA computational methods for Photovoltaic cell parameter extraction based on two diode model , 2011 .

[38]  Zhicong Chen,et al.  A Population Classification Evolution Algorithm for the Parameter Extraction of Solar Cell Models , 2016 .

[39]  A. Sellami,et al.  Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction , 2010 .

[40]  N. Rajasekar,et al.  A new robust, mutated and fast tracking LPSO method for solar PV maximum power point tracking under partial shaded conditions , 2017 .

[41]  Yong Wang,et al.  Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm , 2017 .

[42]  M. F. AlHajri,et al.  A new estimation approach for determining the I–V characteristics of solar cells , 2011 .

[43]  Yong-guan Zhu,et al.  Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. , 2007, Environmental pollution.

[44]  A. Ortiz-Conde,et al.  New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics , 2006 .

[45]  N. Tong,et al.  A parameter extraction technique exploiting intrinsic properties of solar cells , 2016 .

[46]  Antonino Laudani,et al.  An in-depth analysis of the modelling of organic solar cells using multiple-diode circuits , 2016 .

[47]  M. Chegaar,et al.  A new method for evaluating illuminated solar cell parameters , 2001 .

[48]  Kok-Keong Chong,et al.  A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System , 2013, TheScientificWorldJournal.

[49]  Kenneth Gillingham,et al.  Characteristics of low-priced solar PV systems in the U.S. , 2017 .

[50]  Yuqing He,et al.  Parameter extraction of solar cell models using mutative-scale parallel chaos optimization algorithm , 2014 .

[51]  Gonzalo Pajares,et al.  Parameter identification of solar cells using artificial bee colony optimization , 2014 .

[52]  Nasrudin Abd Rahim,et al.  Progress in solar PV technology: Research and achievement , 2013 .

[53]  D. Maskell,et al.  Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm , 2013 .

[54]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[55]  Dalia Yousri,et al.  Flower Pollination Algorithm based solar PV parameter estimation , 2015 .

[56]  Dhiaa Halboot Muhsen,et al.  Parameters extraction of double diode photovoltaic module’s model based on hybrid evolutionary algorithm , 2015 .

[57]  M. Vitelli,et al.  Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems , 2012 .

[58]  Xin Wang,et al.  Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization , 2017 .

[59]  Hasimah Abdul Rahman,et al.  Performance degradation of photovoltaic power system: Review on mitigation methods , 2017 .

[60]  Hans-Georg Beyer,et al.  Irradiance Forecasting for the Power Prediction of Grid-Connected Photovoltaic Systems , 2009, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[61]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[62]  Aboul Ella Hassanien,et al.  A Chaotic Improved Artificial Bee Colony for Parameter Estimation of Photovoltaic Cells , 2017 .

[63]  Shahriar Shafiee,et al.  When will fossil fuel reserves be diminished , 2009 .

[64]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .

[65]  Z. Salam,et al.  An accurate modelling of the two-diode model of PV module using a hybrid solution based on differential evolution , 2016 .

[66]  Nick Bosco,et al.  Evaluation of high‐temperature exposure of photovoltaic modules , 2011 .

[67]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[68]  Gilles Notton,et al.  Calculation of the polycrystalline PV module temperature using a simple method of energy balance , 2006 .

[69]  Lijun Wu,et al.  Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy , 2016 .

[70]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[71]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[72]  Vineet Kumar,et al.  PV cell and module efficient parameters estimation using Evaporation Rate based Water Cycle Algorithm , 2017, Swarm Evol. Comput..

[73]  Meiying Ye,et al.  Parameter extraction of solar cells using particle swarm optimization , 2009 .