Multicuts and Perturb & MAP for Probabilistic Graph Clustering

We present a probabilistic graphical model formulation for the graph clustering problem. This enables us to locally represent uncertainty of image partitions by approximate marginal distributions in a mathematically substantiated way, and to rectify local data term cues so as to close contours and to obtain valid partitions. We exploit recent progress on globally optimal MAP inference by integer programming and on perturbation-based approximations of the log-partition function, in order to sample clusterings and to estimate marginal distributions of node-pairs both more accurately and more efficiently than state-of-the-art methods. Our approach works for any graphically represented problem instance. This is demonstrated for image segmentation and social network cluster analysis. Our mathematical ansatz should be relevant also for other combinatorial problems.

[1]  E. Gumbel Statistical Theory of Extreme Values and Some Practical Applications : A Series of Lectures , 1954 .

[2]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[3]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[4]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[5]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[6]  M. R. Rao,et al.  The partition problem , 1993, Math. Program..

[7]  Joachim M. Buhmann,et al.  Pairwise Data Clustering by Deterministic Annealing , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[9]  Michael I. Jordan Graphical Models , 2003 .

[10]  Santosh S. Vempala,et al.  On clusterings-good, bad and spectral , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[11]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[12]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[13]  F. Steutel,et al.  Infinite Divisibility of Probability Distributions on the Real Line , 2003 .

[14]  Martin J. Wainwright,et al.  Tree-based reparameterization framework for analysis of sum-product and related algorithms , 2003, IEEE Trans. Inf. Theory.

[15]  Tomer Hertz,et al.  Pairwise Clustering and Graphical Models , 2003, NIPS.

[16]  William T. Freeman,et al.  Constructing free-energy approximations and generalized belief propagation algorithms , 2005, IEEE Transactions on Information Theory.

[17]  Amos Fiat,et al.  Correlation clustering in general weighted graphs , 2006, Theor. Comput. Sci..

[18]  Joachim M. Buhmann,et al.  Nonparametric Bayesian Image Segmentation , 2008, International Journal of Computer Vision.

[19]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[20]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[21]  Ulrik Brandes,et al.  On Modularity Clustering , 2008, IEEE Transactions on Knowledge and Data Engineering.

[22]  Ulrike von Luxburg,et al.  Clustering Stability: An Overview , 2010, Found. Trends Mach. Learn..

[23]  Sebastian Nowozin,et al.  Solution stability in linear programming relaxations: graph partitioning and unsupervised learning , 2009, ICML '09.

[24]  Joris M. Mooij,et al.  libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models , 2010, J. Mach. Learn. Res..

[25]  Anthony Wirth,et al.  Correlation Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[26]  George Papandreou,et al.  Perturb-and-MAP random fields: Using discrete optimization to learn and sample from energy models , 2011, 2011 International Conference on Computer Vision.

[27]  Shai Bagon,et al.  Large Scale Correlation Clustering Optimization , 2011, ArXiv.

[28]  Gerhard Reinelt,et al.  Globally Optimal Image Partitioning by Multicuts , 2011, EMMCVPR.

[29]  Ullrich Köthe,et al.  Probabilistic image segmentation with closedness constraints , 2011, 2011 International Conference on Computer Vision.

[30]  Christoph Schnörr,et al.  Continuous Multiclass Labeling Approaches and Algorithms , 2011, SIAM J. Imaging Sci..

[31]  Robert Michael Kirby,et al.  Ambrosio-Tortorelli Segmentation of Stochastic Images: Model Extensions, Theoretical Investigations and Numerical Methods , 2013, International Journal of Computer Vision.

[32]  Jörg H. Kappes,et al.  OpenGM: A C++ Library for Discrete Graphical Models , 2012, ArXiv.

[33]  Daniel Cremers,et al.  A Convex Approach to Minimal Partitions , 2012, SIAM J. Imaging Sci..

[34]  Tommi S. Jaakkola,et al.  On the Partition Function and Random Maximum A-Posteriori Perturbations , 2012, ICML.

[35]  Subhransu Maji,et al.  On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations , 2013, NIPS.

[36]  Marcello Pelillo,et al.  Correlation Clustering with Stochastic Labellings , 2013, SIMBAD.

[37]  Sebastian Nowozin,et al.  A Comparative Study of Modern Inference Techniques for Discrete Energy Minimization Problems , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Ullrich Köthe,et al.  Cut, Glue, & Cut: A Fast, Approximate Solver for Multicut Partitioning , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Sebastian Nowozin,et al.  A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems , 2014, International Journal of Computer Vision.

[40]  Jörg H. Kappes,et al.  Fusion moves for correlation clustering , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Gerhard Reinelt,et al.  Higher-order segmentation via multicuts , 2013, Comput. Vis. Image Underst..