Keyphrase Extraction using Textual and Visual Features

Many current documents include multimedia consisting of text, images and embedded videos. This paper presents a general method that uses Random Forests to automatically extract keyphrases that can be used as very short summaries and to help in retrieval, classification and clustering processes.

[1]  Yunming Ye,et al.  An improved random forest classifier for image classification , 2012, 2012 IEEE International Conference on Information and Automation.

[2]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[3]  Christopher J. Fox,et al.  A stop list for general text , 1989, SIGF.

[4]  Jean-Michel Poggi,et al.  Variable selection using random forests , 2010, Pattern Recognit. Lett..

[5]  Paola Zuccolotto,et al.  Variable Selection Using Random Forests , 2006 .

[6]  M. I. Jordan Leo Breiman , 2011, 1101.0929.

[7]  Andrew Zisserman,et al.  Image Classification using Random Forests and Ferns , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[8]  Yaakov HaCohen-Kerner,et al.  Automatic Extraction and Learning of Keyphrases from Scientific Articles , 2005, CICLing.

[9]  Yiannis Kompatsiaris,et al.  ITI-CERTH participation to TRECVID 2015 , 2015, TRECVID.