Integrating mitochondrial energetics, redox and ROS metabolic networks: a two-compartment model.

[1]  A. Holmgren,et al.  Thioredoxin and glutaredoxin systems. , 2019, The Journal of biological chemistry.

[2]  A. Kudin,et al.  The contribution of thioredoxin-2 reductase and glutathione peroxidase to H(2)O(2) detoxification of rat brain mitochondria. , 2012, Biochimica et biophysica acta.

[3]  Brian O'Rourke,et al.  Glutathione/thioredoxin systems modulate mitochondrial H2O2 emission: An experimental-computational study , 2012, The Journal of general physiology.

[4]  Christian Appenzeller‐Herzog Updates on "endoplasmic reticulum redox". , 2012, Antioxidants & redox signaling.

[5]  Iain McDonald,et al.  Thioredoxin Reductase-2 Is Essential for Keeping Low Levels of H2O2 Emission from Isolated Heart Mitochondria* , 2011, The Journal of Biological Chemistry.

[6]  J. Zweier,et al.  Removal of H₂O₂ and generation of superoxide radical: role of cytochrome c and NADH. , 2011, Free radical biology & medicine.

[7]  R. Winslow,et al.  Mitochondrial energetics, pH regulation, and ion dynamics: a computational-experimental approach. , 2011, Biophysical journal.

[8]  Josep Roca,et al.  Reactive Oxygen Species Production by Forward and Reverse Electron Fluxes in the Mitochondrial Respiratory Chain , 2011, PLoS Comput. Biol..

[9]  Jan-Hendrik S. Hofmeyr,et al.  The logic of kinetic regulation in the thioredoxin system , 2011, BMC Systems Biology.

[10]  E. Cadenas,et al.  Regulation of Mitochondrial Glutathione Redox Status and Protein Glutathionylation by Respiratory Substrates* , 2010, The Journal of Biological Chemistry.

[11]  Dean P. Jones,et al.  A model of redox kinetics implicates the thiol proteome in cellular hydrogen peroxide responses. , 2010, Antioxidants & redox signaling.

[12]  Ajit S. Divakaruni,et al.  Mitochondrial proton and electron leaks. , 2010, Essays in biochemistry.

[13]  S. Cortassa,et al.  Redox-optimized ROS balance: a unifying hypothesis. , 2010, Biochimica et biophysica acta.

[14]  C. Winterbourn,et al.  Mitochondrial peroxiredoxin involvement in antioxidant defence and redox signalling. , 2010, The Biochemical journal.

[15]  D. Kass,et al.  Monoamine Oxidase A–Mediated Enhanced Catabolism of Norepinephrine Contributes to Adverse Remodeling and Pump Failure in Hearts With Pressure Overload , 2010, Circulation research.

[16]  Raimond L. Winslow,et al.  A Reaction-Diffusion Model of ROS-Induced ROS Release in a Mitochondrial Network , 2010, PLoS Comput. Biol..

[17]  R. Winslow,et al.  Modeling cardiac action potential shortening driven by oxidative stress-induced mitochondrial oscillations in guinea pig cardiomyocytes. , 2009, Biophysical journal.

[18]  C. Hoppel,et al.  Dynamic organization of mitochondria in human heart and in myocardial disease. , 2009, The international journal of biochemistry & cell biology.

[19]  A. Camara,et al.  Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. , 2009, Antioxidants & redox signaling.

[20]  P. Brookes,et al.  Oxygen Sensitivity of Mitochondrial Reactive Oxygen Species Generation Depends on Metabolic Conditions , 2009, The Journal of Biological Chemistry.

[21]  S. Cortassa,et al.  Energetic performance is improved by specific activation of K+ fluxes through K(Ca) channels in heart mitochondria. , 2009, Biochimica et biophysica acta.

[22]  Michael P. Murphy,et al.  How mitochondria produce reactive oxygen species , 2008, The Biochemical journal.

[23]  Dean P. Jones,et al.  Redox compartmentalization in eukaryotic cells. , 2008, Biochimica et biophysica acta.

[24]  L. Wojtczak,et al.  Fatty acids as modulators of the cellular production of reactive oxygen species. , 2008, Free radical biology & medicine.

[25]  J. Brosnan,et al.  From metabolic cycles to compartmentation: another first for Krebs , 2008 .

[26]  A. J. Lambert,et al.  Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport. , 2008, Biochimica et biophysica acta.

[27]  Y. Kuznetsov,et al.  New features of the software MatCont for bifurcation analysis of dynamical systems , 2008 .

[28]  S. Cortassa,et al.  Sequential Opening of Mitochondrial Ion Channels as a Function of Glutathione Redox Thiol Status* , 2007, Journal of Biological Chemistry.

[29]  Marc R. Blackman,et al.  Mitochondria as key components of the stress response , 2007, Trends in Endocrinology & Metabolism.

[30]  M. S. Jafri,et al.  Effect of Ca2+ on cardiac mitochondrial energy production is modulated by Na+ and H+ dynamics. , 2007, American journal of physiology. Cell physiology.

[31]  C. Chinopoulos,et al.  Bioenergetics and the formation of mitochondrial reactive oxygen species. , 2006, Trends in pharmacological sciences.

[32]  Melissa L Kemp,et al.  Dynamics of muscle glycogenolysis modeled with pH time course computation and pH-dependent reaction equilibria and enzyme kinetics. , 2006, Biophysical journal.

[33]  R. Raines,et al.  Semisynthesis and characterization of mammalian thioredoxin reductase. , 2006, Biochemistry.

[34]  R. Alberty Biochemical thermodynamics: applications of Mathematica. , 2006, Methods of biochemical analysis.

[35]  E. Weibel,et al.  Exercise-induced maximal metabolic rate scales with muscle aerobic capacity , 2005, Journal of Experimental Biology.

[36]  Robert S. Balaban,et al.  Mitochondria, Oxidants, and Aging , 2005, Cell.

[37]  A. A. Starkov,et al.  Mitochondrial metabolism of reactive oxygen species , 2005, Biochemistry (Moscow).

[38]  M. Beal,et al.  Mitochondrial α-Ketoglutarate Dehydrogenase Complex Generates Reactive Oxygen Species , 2004, The Journal of Neuroscience.

[39]  Raimond L Winslow,et al.  A mitochondrial oscillator dependent on reactive oxygen species. , 2004, Biophysical journal.

[40]  A. Holmgren,et al.  Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. , 2004, Antioxidants & redox signaling.

[41]  Brian O'Rourke,et al.  Synchronized Whole Cell Oscillations in Mitochondrial Metabolism Triggered by a Local Release of Reactive Oxygen Species in Cardiac Myocytes* , 2003, Journal of Biological Chemistry.

[42]  J. Turrens,et al.  Mitochondrial formation of reactive oxygen species , 2003, The Journal of physiology.

[43]  R. Winslow,et al.  An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. , 2003, Biophysical journal.

[44]  A. Murphy,et al.  Complex I-mediated reactive oxygen species generation: modulation by cytochrome c and NAD(P)+ oxidation-reduction state. , 2002, The Biochemical journal.

[45]  M. Brand,et al.  Topology of Superoxide Production from Different Sites in the Mitochondrial Electron Transport Chain* , 2002, The Journal of Biological Chemistry.

[46]  R. Vaughan-Jones,et al.  Intrinsic H+ ion mobility in the rabbit ventricular myocyte , 2002, The Journal of physiology.

[47]  J. Schneider,et al.  Lifespan Extension and Rescue of Spongiform Encephalopathy in Superoxide Dismutase 2 Nullizygous Mice Treated with Superoxide Dismutase–Catalase Mimetics , 2001, The Journal of Neuroscience.

[48]  Freya Q. Schafer,et al.  Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. , 2001, Free radical biology & medicine.

[49]  B. Gamain,et al.  The Putative Glutathione Peroxidase Gene of Plasmodium falciparum Codes for a Thioredoxin Peroxidase* , 2001, The Journal of Biological Chemistry.

[50]  K. Davies,et al.  Mitochondrial free radical generation, oxidative stress, and aging. , 2000, Free radical biology & medicine.

[51]  E. Cadenas,et al.  Estimation of H2O2 gradients across biomembranes , 2000, FEBS letters.

[52]  V. Skulachev,et al.  High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria , 1997, FEBS letters.

[53]  G. Brown,et al.  Cellular energy utilization and molecular origin of standard metabolic rate in mammals. , 1997, Physiological reviews.

[54]  M. Kushmerick Multiple equilibria of cations with metabolites in muscle bioenergetics. , 1997, The American journal of physiology.

[55]  H. Sies,et al.  Oxidative stress: oxidants and antioxidants , 1997, Experimental physiology.

[56]  B. Ames,et al.  Oxidative damage and mitochondrial decay in aging. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[57]  L. Sazanov,et al.  Proton‐translocating transhydrogenase and NAD‐ and NADP‐linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria , 1994, FEBS letters.

[58]  R. Colman,et al.  Selectivity in the binding of NAD(P)+ analogues to NAD- and NADP-dependent pig heart isocitrate dehydrogenases. A nuclear magnetic resonance study. , 1992, Biochemistry.

[59]  C. Nobes,et al.  Non-ohmic proton conductance of the mitochondrial inner membrane in hepatocytes. , 1990, The Journal of biological chemistry.

[60]  A. Halestrap The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. , 1989, Biochimica et biophysica acta.

[61]  J. Hoek,et al.  Physiological roles of nicotinamide nucleotide transhydrogenase. , 1988, The Biochemical journal.

[62]  B Chance,et al.  Hydroperoxide metabolism in mammalian organs. , 1979, Physiological reviews.

[63]  E. Fielden,et al.  A pulse-radiolysis study of the manganese-containing superoxide dismutase from Bacillus stearothermophilus. , 1977, The Biochemical journal.

[64]  M. O'Leary,et al.  Isotope effect studies of the role of metal ions in isocitrate dehydrogenase. , 1977, Biochemistry.

[65]  B Chance,et al.  The cellular production of hydrogen peroxide. , 1972, The Biochemical journal.

[66]  K. Dalziel The interpretation of kinetic data for enzyme-catalysed reactions involving three substrates. , 1969, The Biochemical journal.

[67]  E. R. Andrew,et al.  Nuclear Magnetic Resonance , 1955 .

[68]  Jacky L Snoep,et al.  Enzymes or redox couples? The kinetics of thioredoxin and glutaredoxin reactions in a systems biology context. , 2009, The Biochemical journal.

[69]  K. Krause,et al.  The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. , 2007, Physiological reviews.

[70]  B. Kholodenko,et al.  A model of O·2- generation in the complex III of the electron transport chain , 2004, Molecular and Cellular Biochemistry.

[71]  R. Alberty Thermodynamics of Biochemical Reactions , 2003 .

[72]  D. Putt,et al.  Enrichment and functional reconstitution of glutathione transport activity from rabbit kidney mitochondria: further evidence for the role of the dicarboxylate and 2-oxoglutarate carriers in mitochondrial glutathione transport. , 2000, Archives of biochemistry and biophysics.

[73]  Silverthorn Dee Unglaub Human Physiology: An Integrated Approach , 1998 .

[74]  B. Kholodenko,et al.  A model of O2.-generation in the complex III of the electron transport chain. , 1998, Molecular and cellular biochemistry.