Photonics meets excitonics: natural and artificial molecular aggregates

Abstract Organic molecules store the energy of absorbed light in the form of charge-neutral molecular excitations – Frenkel excitons. Usually, in amorphous organic materials, excitons are viewed as quasiparticles, localized on single molecules, which diffuse randomly through the structure. However, the picture of incoherent hopping is not applicable to some classes of molecular aggregates – assemblies of molecules that have strong near-field interaction between electronic excitations in the individual subunits. Molecular aggregates can be found in nature, in photosynthetic complexes of plants and bacteria, and they can also be produced artificially in various forms including quasi-one dimensional chains, two-dimensional films, tubes, etc. In these structures light is absorbed collectively by many molecules and the following dynamics of molecular excitation possesses coherent properties. This energy transfer mechanism, mediated by the coherent exciton dynamics, resembles the propagation of electromagnetic waves through a structured medium on the nanometer scale. The absorbed energy can be transferred resonantly over distances of hundreds of nanometers before exciton relaxation occurs. Furthermore, the spatial and energetic landscape of molecular aggregates can enable the funneling of the exciton energy to a small number of molecules either within or outside the aggregate. In this review we establish a bridge between the fields of photonics and excitonics by describing the present understanding of exciton dynamics in molecular aggregates.

[1]  Garry Rumbles,et al.  Excitons in nanoscale systems , 2006, Nature materials.

[2]  Spanò Fermion excited states in one-dimensional molecular aggregates with site disorder: Nonlinear optical response. , 1991, Physical review letters.

[3]  Howard DeVoe,et al.  Optical Properties of Molecular Aggregates. I. Classical Model of Electronic Absorption and Refraction , 1964 .

[4]  A. Siegman,et al.  Dynamics of Energy Transport in Molecular Crystals: The Picosecond Transient-Grating Method , 1978 .

[5]  R. Silbey,et al.  Unified treatment of coherent and incoherent electronic energy transfer dynamics using classical electrodynamics. , 2010, The Journal of chemical physics.

[6]  K. Leo,et al.  In situ differential reflectance spectroscopy of thin crystalline films of PTCDA on different substrates , 2005 .

[7]  D. Higgins,et al.  A MOLECULAR YARN : NEAR-FIELD OPTICAL STUDIES OF SELF-ASSEMBLED, FLEXIBLE,FLUORESCENT FIBERS , 1996 .

[8]  I. Chan,et al.  High pressure investigation of absorption spectra of J‐aggregates , 1996 .

[9]  M. Bawendi,et al.  Utilizing redox-chemistry to elucidate the nature of exciton transitions in supramolecular dye nanotubes. , 2012, Nature chemistry.

[10]  Masoud Mohseni,et al.  Environment-assisted quantum transport , 2008, 0807.0929.

[11]  D. Tronrud,et al.  The structural basis for the difference in absorbance spectra for the FMO antenna protein from various green sulfur bacteria , 2009, Photosynthesis Research.

[12]  M. B. Plenio,et al.  Dephasing-assisted transport: quantum networks and biomolecules , 2008, 0807.4902.

[13]  C. Böttcher,et al.  Supramolecular Structures of J-Aggregates of Carbocyanine Dyes in Solution , 2000 .

[14]  K. Misawa,et al.  New fabrication method for highly oriented J aggregates dispersed in polymer films , 1993 .

[15]  J. Olson The FMO Protein , 2004, Photosynthesis Research.

[16]  J. Joannopoulos,et al.  Photonic crystals: putting a new twist on light , 1997, Nature.

[17]  W. Harrison,et al.  Exciton Annihilation in J-Aggregates Probed by Femtosecond Fluorescence Upconversion , 2000 .

[18]  G. Scheibe Über den Mechanismus der Sensibilisierung photochemischer Reaktionen durch Farbstoffe, insbesondere der Assimilation , 1937, Naturwissenschaften.

[19]  V. Bulović,et al.  Twenty-fold enhancement of molecular fluorescence by coupling to a J-aggregate critically coupled resonator. , 2012, ACS nano.

[20]  A. Suna Kinematics of Exciton-Exciton Annihilation in Molecular Crystals , 1970 .

[21]  Frank Wuerthner,et al.  J‐Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials. , 2011 .

[22]  A. Eisfeld,et al.  The J- and H-bands of organic dye aggregates , 2006 .

[23]  A. D. McLachlan,et al.  Hypochromism and optical rotation in helical polymers , 1964 .

[24]  B. Nordén Linear and circular dichroism of polymeric pseudoisocyanine , 1977 .

[25]  F. Spano,et al.  Theory of exciton dynamics in molecular aggregates in presence of polaronic effects , 2012 .

[26]  Jakub Dostál,et al.  Two-dimensional electronic spectroscopy reveals ultrafast energy diffusion in chlorosomes. , 2012, Journal of the American Chemical Society.

[27]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[28]  J. Knoester,et al.  Nonmonotonic energy harvesting efficiency in biased exciton chains. , 2007, The Journal of chemical physics.

[29]  M E Abdelsalam,et al.  Strong coupling between localized plasmons and organic excitons in metal nanovoids. , 2006, Physical review letters.

[30]  Sven Höfling,et al.  Observation of Bogoliubov excitations in exciton-polariton condensates , 2008 .

[31]  P. Wolynes,et al.  Localizability and dephasing of dipolar excitons in topologically disordered systems , 1987 .

[32]  Miyano,et al.  Numerical study of excitons in a two-dimensional organic dye aggregate. , 1996, Physical review. B, Condensed matter.

[33]  J. Knoester,et al.  Temperature dependent fluorescence in disordered Frenkel chains: interplay of equilibration and local band-edge level structure. , 2003, Physical review letters.

[34]  F. Hofelich Die Bewegung eines Exzitons entlang eines Polymers unter dem Einfluß der Gitterschwingungen , 1966 .

[35]  G. Scheibe,et al.  Über die Veränderlichkeit der Absorptionsspektren in Lösungen und die Nebenvalenzen als ihre Ursache , 1937 .

[36]  Benoît Champagne,et al.  Multimode simulation of dimer absorption spectra from first principles calculations: application to the 3,4,9,10-perylenetetracarboxylic diimide dimer. , 2009, The Journal of chemical physics.

[37]  Igor V. Stiopkin,et al.  Heterogeneous exciton dynamics revealed by two-dimensional optical spectroscopy. , 2006, The journal of physical chemistry. B.

[38]  M. Yung,et al.  Exciton transport in thin-film cyanine dye J-aggregates. , 2012, The Journal of chemical physics.

[39]  G. Oostergetel,et al.  Long‐range organization of bacteriochlorophyll in chlorosomes of Chlorobium tepidum investigated by cryo‐electron microscopy , 2007, FEBS letters.

[40]  Christian Strüber,et al.  Coherent Two-Dimensional Nanoscopy , 2011, Science.

[41]  F. Spano Temperature-dependent emission in disordered herringbone aggregates of conjugated oligomers , 2005 .

[42]  S. Kirstein,et al.  J-aggregates of amphiphilic cyanine dyes: Self-organization of artificial light harvesting complexes , 2006 .

[43]  Alán Aspuru-Guzik,et al.  Memory-Assisted Exciton Diffusion in the Chlorosome Light-Harvesting Antenna of Green Sulfur Bacteria. , 2012, The journal of physical chemistry letters.

[44]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[45]  E. Teller,et al.  Migration and Photochemical Action of Excitation Energy in Crystals , 1938 .

[46]  Vladimir Bulovic,et al.  Exciton-exciton annihilation in organic polariton microcavities , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[47]  J. Frenkel On the Transformation of Light into Heat in Solids. II , 1931 .

[48]  V. M. Kenkre,et al.  Theory of depolarization of fluorescence in molecular pairs , 1979 .

[49]  Karl Leo,et al.  The lowest energy Frenkel and charge-transfer excitons in quasi-one-dimensional structures: application to MePTCDI and PTCDA crystals , 2000 .

[50]  A. Eisfeld,et al.  Exchange narrowing of the J band of molecular dye aggregates. , 2008, The Journal of chemical physics.

[51]  R. van Grondelle,et al.  Revisiting the optical properties of the FMO protein , 2010, Photosynthesis Research.

[52]  J. Holtsmark Über die Absorption in Na-Dampf , 1925 .

[53]  Hermann Haken,et al.  The coupled coherent and incoherent motion of excitons and its influence on the line shape of optical absorption , 1972 .

[54]  K. Feller,et al.  Intrinsic optical bistablility of an ultrathin film consisting of oriented linear aggregates , 2000 .

[55]  W. Leng,et al.  Resonance Raman Intensity Analysis of Merocyanine Dimers in Solution , 2004 .

[56]  J. Knoester Nonlinear optical line shapes of disordered molecular aggregates: Motional narrowing and the effect of intersite correlations , 1993 .

[57]  Jasper Knoester,et al.  Optical properties of disordered molecular aggregates: a numerical study , 1991 .

[58]  G. Fleming,et al.  Calculation of Couplings and Energy-Transfer Pathways between the Pigments of LH2 by the ab Initio Transition Density Cube Method , 1998 .

[59]  P. R. Hania,et al.  Structure, Spectroscopy, and Microscopic Model of Tubular Carbocyanine Dye Aggregates , 2004 .

[60]  A. Madhukar,et al.  Exact Solution for the Diffusion of a Particle in a Medium with Site Diagonal and Off-Diagonal Dynamic Disorder , 1977 .

[61]  V. May,et al.  Ultrafast Exciton Motion in Photosynthetic Antenna Systems: The FMO-Complex , 1998 .

[62]  K. Schulten,et al.  Coupling of protein motion to electron transfer: Molecular dynamics and stochastic quantum mechanics study of photosynthetic reaction centers , 1991 .

[63]  M. Gouterman,et al.  Vibronic Coupling. IV. Trimers and Trigonal Molecules , 1967 .

[64]  A. Lemaître,et al.  Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor , 2009 .

[65]  Klaus Schulten,et al.  Excitons in a photosynthetic light-harvesting system: a combined molecular dynamics, quantum chemistry, and polaron model study. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  K. Schaffner,et al.  A refined model of the chlorosomal antennae of the green bacterium Chlorobium tepidum from proton chemical shift constraints obtained with high-field 2-D and 3-D MAS NMR dipolar correlation spectroscopy. , 2001, Biochemistry.

[67]  Alexander Eisfeld,et al.  Equivalence of quantum and classical coherence in electronic energy transfer. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[68]  E. Knapp Lineshapes of molecular aggregates, exchange narrowing and intersite correlation , 1984 .

[69]  EDWIN E. JELLEY,et al.  Spectral Absorption and Fluorescence of Dyes in the Molecular State , 1936, Nature.

[70]  Alexander Eisfeld,et al.  Influence of complex exciton-phonon coupling on optical absorption and energy transfer of quantum aggregates. , 2009, Physical review letters.

[71]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[72]  V. Weisskopf,et al.  Effects of Configuration Interaction on Intensities and Phase Shifts , 2001 .

[73]  Michael Schreiber,et al.  Numerical Experiments on the Absorption Lineshape of the Exciton under Lattice Vibrations. I. The Overall Lineshape. , 1982 .

[74]  P. Rebentrost,et al.  Atomistic study of the long-lived quantum coherences in the Fenna-Matthews-Olson complex. , 2011, Biophysical journal.

[75]  H. Meyer,et al.  Vibronic transitions and quantum dynamics in molecular oligomers: a theoretical analysis with an application to aggregates of perylene bisimides. , 2009, The journal of physical chemistry. A.

[76]  Mathias Müller,et al.  Structure of Epitaxial Layers of KCl on Ag(100) , 2011 .

[77]  Vasudev M. Kenkre,et al.  Exciton Dynamics in Molecular Crystals and Aggregates , 1982 .

[78]  J. Mugnier,et al.  Strong coupling between surface plasmons and excitons in an organic semiconductor. , 2004, Physical review letters.

[79]  J. Briggs,et al.  Bandshapes in polymer spectra , 1971 .

[80]  Peter Nordlander,et al.  Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. , 2008, Nano letters.

[81]  W. Strunz,et al.  SPECTRAL PROPERTIES OF MOLECULAR OLIGOMERS: A NON-MARKOVIAN QUANTUM STATE DIFFUSION APPROACH , 2010, 1008.3611.

[82]  B. K. Mishra,et al.  Cyanines during the 1990s: A Review. , 2000, Chemical reviews.

[83]  Miaomiao Wang,et al.  Spontaneous Assembly of Helical Cyanine Dye Aggregates on DNA Nanotemplates , 1999 .

[84]  J. Frenkel Zur Theorie der Resonanzverbreiterung von Spektrallinien , 1930 .

[85]  Hartmut Haug,et al.  Exciton-polariton Bose-Einstein condensation , 2010 .

[86]  S. Dähne,et al.  Proof of Chirality of J-Aggregates Spontaneously and Enantioselectively Generated from Achiral Dyes , 2000 .

[87]  S. Forrest,et al.  Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching , 2009 .

[88]  T. Holstein,et al.  Studies of polaron motion: Part II. The “small” polaron , 1959 .

[89]  A. Eisfeld,et al.  The shape of the J-band of pseudoisocyanine , 2007 .

[90]  A. Bierman Exciton Wave Packet Localization on an Impurity , 1970 .

[91]  G. Fleming,et al.  Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: reduced hierarchy equation approach. , 2009, The Journal of chemical physics.

[92]  F. Würthner,et al.  One-dimensional exciton diffusion in perylene bisimide aggregates. , 2011, The journal of physical chemistry. A.

[93]  Walter T. Strunz,et al.  The non-Markovian stochastic Schrödinger equation for open systems , 1997, quant-ph/9706050.

[94]  M. R. Philpott Some Modern Aspects of Exciton Theory , 2007 .

[95]  Stephen R. Forrest,et al.  Room-temperature polariton lasing in an organic single-crystal microcavity , 2010 .

[96]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[97]  L. Gallos,et al.  A Kinetic Model for J-Aggregate Dynamics † , 2000 .

[98]  Volkhard May,et al.  Charge and Energy Transfer Dynamics in Molecular Systems, 2nd, Revised and Enlarged Edition , 2004 .

[99]  Wei Zhang,et al.  Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. , 2006, Physical review letters.

[100]  J. Knoester,et al.  Optical Properties of Helical Cylindrical Molecular Aggregates: The Homogeneous Limit , 2002 .

[101]  Donal D. C. Bradley,et al.  Room Temperature Polariton Emission from Strongly Coupled Organic Semiconductor Microcavities , 1999 .

[102]  M. Gouterman,et al.  Vibronic Coupling. II. Spectra of Dimers , 1964 .

[103]  T. Smith,et al.  J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. , 1991, Biochemistry.

[104]  Peter A. Hobson,et al.  Strong exciton–photon coupling in a low-Q all-metal mirror microcavity , 2002 .

[105]  O. Kuhn,et al.  Quantum Dynamics and Spectroscopy of Excitons in Molecular Aggregates , 2011, 1108.4834.

[106]  A. Eisfeld A simple method to obtain information on the conformation of dipole–dipole coupled dimers , 2007 .

[107]  P. Kamat,et al.  Harvesting infrared photons with tricarbocyanine dye clusters. , 2006, The journal of physical chemistry. B.

[108]  Hermann Haken,et al.  An exactly solvable model for coherent and incoherent exciton motion , 1973 .

[109]  E. S. Medvedev,et al.  Radiationless transitions in polyatomic molecules , 1995 .

[110]  M. S. Skolnick,et al.  Collective fluid dynamics of a polariton condensate in a semiconductor microcavity , 2009, Nature.

[111]  Donald A. Bryant,et al.  Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes , 2009, Proceedings of the National Academy of Sciences.

[112]  E. Blout,et al.  Optical Rotatory Dispersion of Dyes Bound to Macromolecules. Cationic Dyes: Polyglutamic Acid Complexes2,3 , 1961 .

[113]  U. Wild,et al.  Solvent, Temperature, and Excitonic Effects in the Optical Spectra of Pseudoisocyanine Monomer and J-Aggregates , 1997 .

[114]  F. Würthner,et al.  Circular dichroism and absorption spectroscopy of merocyanine dimer aggregates: molecular properties and exciton transfer dynamics from time-dependent quantum calculations. , 2007, Physical chemistry chemical physics : PCCP.

[115]  K. Vahala Optical microcavities , 2003, Nature.

[116]  A. Eisfeld,et al.  Classical master equation for excitonic transport under the influence of an environment. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[117]  Spanò,et al.  Unusual Behavior of Two-Photon Absorption from Three-Level Molecules in a One-Dimensional Lattice. , 1995, Physical review letters.

[118]  C. Swenberg,et al.  Analysis of picosecond laser induced fluorescence phenomena in photosynthetic membranes utilizing a master equation approach. , 1979, Biophysical journal.

[119]  P. Schouwink,et al.  Observation of Strong Exciton-Photon Coupling in an Organic Microcavity , 2001 .

[120]  Naomi J Halas,et al.  Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity. , 2011, Nano letters.

[121]  S. Krawczyk,et al.  Stark effect spectroscopy of exciton states in the dimer of acridine orange , 2003 .

[122]  Markus Schwoerer,et al.  Organic Molecular Solids , 2007 .

[123]  Ifor D. W. Samuel,et al.  Exciton–Exciton Annihilation in Mixed‐Phase Polyfluorene Films , 2010 .

[124]  V. Cápek Generalized Haken-Strobl-Reineker model of excitation transfer , 1985 .

[125]  W. Strunz,et al.  Vibronic energies and spectra of molecular dimers. , 2005, The Journal of chemical physics.

[126]  J. M. Womick,et al.  Exciton coherence and energy transport in the light-harvesting dimers of allophycocyanin. , 2009, The journal of physical chemistry. B.

[127]  Arto Nurmikko,et al.  Strong coupling in a microcavity LED. , 2005, Physical review letters.

[128]  V. Malyshev,et al.  Frenkel excitons in one-dimensional systems with correlated disorder , 1999 .

[129]  J. Rieger,et al.  Organic Nanoparticles in the Aqueous Phase-Theory, Experiment, and Use. , 2001, Angewandte Chemie.

[130]  P. Wolynes,et al.  Localization and dephasing effects in a time-dependent Anderson Hamiltonian , 1990 .

[131]  T. Azumi,et al.  WHAT DOES THE TERM “VIBRONIC COUPLING” MEAN? , 1977 .

[132]  V. Bulović,et al.  Color-selective photocurrent enhancement in coupled J-aggregate/nanowires formed in solution. , 2011, Nano letters.

[133]  R. Augulis,et al.  Localization and transport of excitation energy in inhomogeneous supramolecular arrays , 2010 .

[134]  K. Schulten,et al.  From atomistic modeling to excitation transfer and two-dimensional spectra of the FMO light-harvesting complex. , 2011, The journal of physical chemistry. B.

[135]  W. Kaiser,et al.  The first step of aggregation of pic: the dimerization , 1981 .

[136]  H. Cypionka,et al.  An extremely low‐light adapted phototrophic sulfur bacterium from the Black Sea , 1992 .

[137]  P. Scherer,et al.  On the theory of vibronic structure of linear aggregates. Application to pseudoisocyanin (PIC) , 1984 .

[138]  F. Pavinatto,et al.  Langmuir and Langmuir-Blodgett (LB) films of tetrapyridyl metalloporphyrins , 2008 .

[139]  Hans Kuhn,et al.  Energy transfer in monolayers with cyanine dye Sheibe aggregates , 1988 .

[140]  R. Merrifield Theory of the Vibrational Structure of Molecular Exciton States , 1964 .

[141]  Jeremy M Moix,et al.  Efficient energy transfer in light-harvesting systems, III: The influence of the eighth bacteriochlorophyll on the dynamics and efficiency in FMO , 2011, 1109.3416.

[142]  V. May,et al.  Theory of exciton-vibrational dynamics in molecular dimers , 1996 .

[143]  H. Forsterling,et al.  Extended dipole model for aggregates of dye molecules , 1970 .

[144]  A. Monkman,et al.  The role of exciton diffusion in energy transfer between polyfluorene and tetraphenyl porphyrin , 2005 .

[145]  L. M. I. and,et al.  Aggregation of Pseudoisocyanine Iodide in Cellulose Acetate Films: Structural Characterization by FTIR , 2000 .

[146]  T. Renger,et al.  How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. , 2006, Biophysical journal.

[147]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[148]  R. Kniprath,et al.  Theory of the absorption and circular dichroism spectra of helical molecular aggregates. , 2007, The Journal of chemical physics.

[149]  Stephan W Koch,et al.  Vacuum Rabi splitting in semiconductors , 2006 .

[150]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[151]  Jörg Overmann,et al.  An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[152]  J. Kirkwood,et al.  CRITIQUE OF THE THEORY OF OPTICAL ACTIVITY OF HELICAL POLYMERS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[153]  D. Snoke,et al.  Bose-Einstein Condensation of Excitons and Biexcitons: And Coherent Nonlinear Optics with Excitons , 2000 .