Engineering Graphics in Geometric Algebra

We illustrate the suitability of geometric algebra for representing structures and developing algorithms in computer graphics, especially for engineering applications. A number of example applications are reviewed. Geometric algebra unites many underpinning mathematical concepts in computer graphics such as vector algebra and vector fields, quaternions, kinematics and projective geometry, and it easily deals with geometric objects, operations, and transformations. Not only are these properties important for computational engineering, but also for the computational point-of-view they provide. We also include the potential of geometric algebra for optimizations and highly efficient implementations.

[1]  Carsten Cibura,et al.  Geometric Algebra Approach to Fluid Dynamics , 2008 .

[2]  Eduardo Bayro Corrochano,et al.  Geometric Algebra with Applications in Science and Engineering , 2012 .

[3]  Leo Dorst,et al.  Geometric algebra: A computational framework for geometrical applications ({Part II: Applications}) , 2002 .

[4]  MedioniGerard,et al.  Registration of 3D Points Using Geometric Algebra and Tensor Voting , 2007 .

[5]  Kanta Tachibana,et al.  Classification and Clustering of Spatial Patterns with Geometric Algebra , 2010, Geometric Algebra Computing.

[6]  Leo Dorst,et al.  Modeling 3D Euclidean Geometry , 2003, IEEE Computer Graphics and Applications.

[7]  Leo Dorst,et al.  3 D Euclidean Geometry Through Conformal Geometric Algebra ( a GAViewer tutorial ) , 2005 .

[8]  Eduardo Bayro-Corrochano,et al.  Inverse kinematics, fixation and grasping using conformal geometric algebra , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[9]  Joan Lasenby,et al.  A Geometric Analysis of the Trifocal Tensor , 1998, IVCNZ.

[10]  Joan Lasenby,et al.  New Geometric Methods for Computer Vision: An Application to Structure and Motion Estimation , 1998, International Journal of Computer Vision.

[11]  D. Hestenes,et al.  Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics , 1984 .

[12]  Joan Lasenby,et al.  Applications of Conformal Geometric Algebra in Computer Vision and Graphics , 2004, IWMM/GIAE.

[13]  Eduardo Bayro-Corrochano,et al.  Geometric preprocessing, geometric feedforward neural networks and Clifford support vector machines for visual learning , 2005, Neurocomputing.

[14]  Stephen Mann,et al.  Geometric Algebra: A Computational Framework for Geometrical Applications (Part 2) , 2002, IEEE Computer Graphics and Applications.

[15]  D. Hildebrand,et al.  Simulation of elastic rods using conformal geometric algebra , 2008 .

[16]  Bodo Rosenhahn,et al.  Pose estimation revisited , 2006 .

[17]  Leo Dorst,et al.  Honing geometric algebra for its use in the computer sciences , 2001 .

[18]  Eduardo Bayro-Corrochano,et al.  Registration of 3D Points Using Geometric Algebra and Tensor Voting , 2007, Int. J. Comput. Vis..

[19]  Joan Lasenby,et al.  Applications of Geometric Algebra in Computer Science and Engineering , 2012 .

[20]  Christian Perwass,et al.  Geometric Algebra with Applications in Engineering , 2008, Geometry and Computing.

[21]  Eduardo Bayro-Corrochano,et al.  A Geometric Approach for the Theory and Applications of 3D Projective Invariants , 2002, Journal of Mathematical Imaging and Vision.

[22]  D. Hestenes,et al.  Clifford Algebra to Geometric Calculus , 1984 .

[23]  Eduardo Bayro-Corrochano,et al.  Kinematics and diferential kinematics of binocular robot heads , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[24]  Eduardo Bayro-Corrochano,et al.  Motor Algebra for 3D Kinematics: The Case of the Hand-Eye Calibration , 2000, Journal of Mathematical Imaging and Vision.

[25]  Joan Lasenby,et al.  Oriented Conformal Geometric Algebra , 2008 .

[26]  Marc Alexa,et al.  Competitive Runtime Performance for Inverse Kinematics Algorithms using Conformal Geometric Algebra , 2006, Eurographics.

[27]  Leo Dorst,et al.  The making of GABLE: a geometric algebra learning environment in Matlab , 2001 .

[28]  Stephen Mann,et al.  Geometric algebra for computer science - an object-oriented approach to geometry , 2007, The Morgan Kaufmann series in computer graphics.

[29]  Bodo Rosenhahn,et al.  The Twist Representation of Free-form Objects , 2006 .

[30]  Eduardo Bayro-Corrochano,et al.  A new methodology for computing invariants in computer vision , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[31]  Eduardo Bayro-Corrochano,et al.  Registration of 3D Points Using Geometric Algebra and Tensor Voting , 2010, International Journal of Computer Vision.

[32]  Gerald Sommer,et al.  Geometric Computing with Clifford Algebras , 2001, Springer Berlin Heidelberg.

[33]  W. Forstner,et al.  Uncertain Geometry with Circles, Spheres and Conics , 2006 .

[34]  Kanta Tachibana,et al.  Optimal Learning Rates for Clifford Neurons , 2007, ICANN.

[35]  Leo Dorst,et al.  Geometric algebra: A computational framework for geometrical applications (Part I: Algebra) , 2002 .

[36]  Gerald Sommer,et al.  Computer Algebra and Geometric Algebra with Applications, 6th International Workshop, IWMM 2004, Shanghai, China, May 19-21, 2004, and International Workshop, GIAE 2004, Xian, China, May 24-28, 2004, Revised Selected Papers , 2005, IWMM/GIAE.

[37]  Daniel Fontijne,et al.  Gaigen 2:: a geometric algebra implementation generator , 2006, GPCE '06.

[38]  Andreas Koch,et al.  Efficient Inverse Kinematics Algorithm Based on Conformal Geometric Algebra - Using Reconfigurable Hardware , 2008, GRAPP.

[39]  Joan Lasenby,et al.  A unified description of multiple view geometry , 2001 .

[40]  Eduardo Bayro-Corrochano,et al.  Geometric neural computing , 2001, IEEE Trans. Neural Networks.

[41]  Leo Dorst,et al.  Modeling and visualization of 3D polygonal mesh surfaces using geometric algebra , 2004, Comput. Graph..

[42]  David Hestenes,et al.  Homogeneous Rigid Body Mechanics with Elastic Coupling , 2002 .

[43]  Bodo Rosenhahn,et al.  Pose Estimation in Conformal Geometric Algebra Part I: The Stratification of Mathematical Spaces , 2005, Journal of Mathematical Imaging and Vision.

[44]  Gerald Sommer,et al.  Geometry and Kinematics with Uncertain Data , 2006, ECCV.

[45]  Gerald Sommer,et al.  Applications of Geometric Algebra in Robot Vision , 2004, IWMM/GIAE.

[46]  Clifford,et al.  Applications of Grassmann's Extensive Algebra , 1878 .

[47]  Dietmar Hildenbrand,et al.  Analysis of Point Clouds - Using Conformal Geometric Algebra , 2013, GRAPP.

[48]  Gerald Sommer,et al.  The Inversion Camera Model , 2006, DAGM-Symposium.

[49]  Kanta Tachibana,et al.  Coordinate independent update formulas for versor Clifford neurons , 2008 .

[50]  Gerik Scheuermann,et al.  Clifford Fourier transform on vector fields , 2005, IEEE Transactions on Visualization and Computer Graphics.