Coarse-grained modeling of RNA 3D structure.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[4]  J. Devlin,et al.  Urey-Bradley potential constants in dinitrogen trioxide , 1961 .

[5]  W. Olson,et al.  Spatial configurations of polynucleotide chains. III. Polydeoxyribonucleotides , 1972 .

[6]  W. Olson,et al.  Spatial configurations of polynucleotide chains. I. Steric interactions in polyribonucleotides: A virtual bond model , 1972, Biopolymers.

[7]  P J Flory,et al.  Spatial configuration of polynucleotide chains. II. Conformational energies and the average dimensions of polyribonucleotides , 1972, Biopolymers.

[8]  W. Olson,et al.  Configurational statistics of polynucleotide chains. A single virtual bond treatment. , 1975, Macromolecules.

[9]  Wilma K. Olson,et al.  Configurational Statistics of Polynucleotide Chains. An Updated Virtual Bond Model to Treat Effects of Base Stacking , 1980 .

[10]  S. Papson,et al.  “Model” , 1981 .

[11]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[12]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[13]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[15]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[16]  B. Ganem RNA world , 1987, Nature.

[17]  J. Ponder,et al.  An efficient newton‐like method for molecular mechanics energy minimization of large molecules , 1987 .

[18]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[19]  Alan M. Ferrenberg,et al.  New Monte Carlo technique for studying phase transitions. , 1988, Physical review letters.

[20]  Alan M. Ferrenberg,et al.  Optimized Monte Carlo data analysis. , 1989, Physical Review Letters.

[21]  M. Sippl Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins. , 1990, Journal of molecular biology.

[22]  W. C. Still,et al.  Semianalytical treatment of solvation for molecular mechanics and dynamics , 1990 .

[23]  J. Hearst,et al.  Predicting the three-dimensional folding of transfer RNA with a computer modeling protocol. , 1991, Biochemistry.

[24]  J E Hearst,et al.  Computer modeling 16 S ribosomal RNA. , 1991, Journal of molecular biology.

[25]  Berg,et al.  Multicanonical ensemble: A new approach to simulate first-order phase transitions. , 1992, Physical review letters.

[26]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[27]  K. Sharp,et al.  Macroscopic models of aqueous solutions : biological and chemical applications , 1993 .

[28]  S. Harvey,et al.  Modeling large nucleic acids , 1993 .

[29]  Manfred J. Sippl,et al.  Boltzmann's principle, knowledge-based mean fields and protein folding. An approach to the computational determination of protein structures , 1993, J. Comput. Aided Mol. Des..

[30]  S. Harvey,et al.  Modeling large RNAs and ribonucleoprotein particles using molecular mechanics techniques. , 1994, Biophysical journal.

[31]  Stephen C. Harvey,et al.  Utilization of shape data in molecular mechanics using a potential based on spherical harmonic surfaces , 1994, J. Comput. Chem..

[32]  Jacek Klinowski,et al.  Taboo Search: An Approach to the Multiple Minima Problem , 1995, Science.

[33]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[34]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[35]  Shankar Kumar,et al.  Multidimensional free‐energy calculations using the weighted histogram analysis method , 1995, J. Comput. Chem..

[36]  B. Roux The calculation of the potential of mean force using computer simulations , 1995 .

[37]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[38]  S. Whittington,et al.  Monte carlo study of the interacting self-avoiding walk model in three dimensions , 1996 .

[39]  Y. Okamoto,et al.  Molecular dynamics, Langevin, and hybrid Monte Carlo simulations in multicanonical ensemble , 1996, physics/9710018.

[40]  Laxmikant V. Kalé,et al.  NAMD: a Parallel, Object-Oriented Molecular Dynamics Program , 1996, Int. J. High Perform. Comput. Appl..

[41]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[42]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[43]  A. Kidera,et al.  Multicanonical Ensemble Generated by Molecular Dynamics Simulation for Enhanced Conformational Sampling of Peptides , 1997 .

[44]  E. Westhof,et al.  Hierarchy and dynamics of RNA folding. , 1997, Annual review of biophysics and biomolecular structure.

[45]  S. Pongor,et al.  Rod models of DNA: sequence-dependent anisotropic elastic modelling of local bending phenomena. , 1998, Trends in biochemical sciences.

[46]  B. D. Coleman,et al.  The elastic rod model for DNA and its application to the tertiary structure of DNA minicircles in mononucleosomes. , 1998, Biophysical journal.

[47]  P. Kollman,et al.  Continuum Solvent Studies of the Stability of DNA, RNA, and Phosphoramidate−DNA Helices , 1998 .

[48]  Wolfhard Janke,et al.  Multicanonical Monte Carlo simulations , 1998 .

[49]  A. Pyle,et al.  Stepping through an RNA structure: A novel approach to conformational analysis. , 1998, Journal of molecular biology.

[50]  R Samudrala,et al.  A graph-theoretic algorithm for comparative modeling of protein structure. , 1998, Journal of molecular biology.

[51]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[52]  D. Turner,et al.  Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. , 1998, Biochemistry.

[53]  U H Hansmann,et al.  New Monte Carlo algorithms for protein folding. , 1999, Current opinion in structural biology.

[54]  Laxmikant V. Kale,et al.  NAMD2: Greater Scalability for Parallel Molecular Dynamics , 1999 .

[55]  I. Tinoco,et al.  How RNA folds. , 1999, Journal of molecular biology.

[56]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[57]  A. Warshel,et al.  Thermodynamic Parameters for Stacking and Hydrogen Bonding of Nucleic Acid Bases in Aqueous Solution: Ab Initio/Langevin Dipoles Study , 1999 .

[58]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[59]  D. Case,et al.  Theory and applications of the generalized born solvation model in macromolecular simulations , 2000, Biopolymers.

[60]  J. Mccammon,et al.  Quantum-dynamical picture of a multistep enzymatic process: reaction catalyzed by phospholipase A(2). , 2000, Biophysical journal.

[61]  J. Doudna Structural genomics of RNA , 2000, Nature Structural Biology.

[62]  Alexander D. MacKerell,et al.  Development and current status of the CHARMM force field for nucleic acids , 2000, Biopolymers.

[63]  V. Zhurkin,et al.  Modeling DNA deformations. , 2000, Current opinion in structural biology.

[64]  E. Westhof,et al.  TectoRNA: modular assembly units for the construction of RNA nano-objects. , 2001, Nucleic acids research.

[65]  Taboo search by successive confinement: surveying a potential energy surface. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[68]  V. Pande,et al.  Multiplexed-replica exchange molecular dynamics method for protein folding simulation. , 2003, Biophysical journal.

[69]  Z. Weng,et al.  A novel shape complementarity scoring function for protein‐protein docking , 2003, Proteins.

[70]  A Xayaphoummine,et al.  Prediction and statistics of pseudoknots in RNA structures using exactly clustered stochastic simulations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[71]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[72]  Z. Weng,et al.  ZDOCK: An initial‐stage protein‐docking algorithm , 2003, Proteins.

[73]  W. B. Arendall,et al.  RNA backbone is rotameric , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Anna Marie Pyle,et al.  RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space. , 2003, Nucleic acids research.

[75]  J. Antosiewicz,et al.  Constant-pH molecular dynamics study of protonation-structure relationship in a heptapeptide derived from ovomucoid third domain. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[77]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[78]  J. Antosiewicz,et al.  Constant-pH molecular dynamics simulations: a test case of succinic acid , 2004 .

[79]  Alain Xayaphoummine,et al.  Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots , 2005, Nucleic Acids Res..

[80]  D. Thirumalai,et al.  Mechanical unfolding of RNA hairpins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[82]  Song Cao,et al.  Predicting RNA folding thermodynamics with a reduced chain representation model. , 2005, RNA.

[83]  Michael Levitt,et al.  Describing RNA structure by libraries of clustered nucleotide doublets. , 2005, Journal of molecular biology.

[84]  Klaus Schulten,et al.  Computational Investigations of Biological Nanosystems , 2000 .

[85]  Robert K Z Tan,et al.  YUP: A Molecular Simulation Program for Coarse-Grained and Multi-Scaled Models. , 2006, Journal of chemical theory and computation.

[86]  Changbong Hyeon,et al.  Forced-unfolding and force-quench refolding of RNA hairpins. , 2006, Biophysical journal.

[87]  Shi-jie Chen,et al.  RNA helix stability in mixed Na+/Mg2+ solution. , 2007, Biophysical journal.

[88]  I. Tinoco,et al.  Single-molecule mechanical unfolding and folding of a pseudoknot in human telomerase RNA. , 2007, RNA.

[89]  P. Cieplak,et al.  Molecular Dynamics and Free Energy Study of the Conformational Equilibria in the UUUU RNA Hairpin. , 2007, Journal of chemical theory and computation.

[90]  V. Viasnoff,et al.  Encoding folding paths of RNA switches , 2006, Nucleic acids research.

[91]  Nils G Walter,et al.  Molecular dynamics simulations of RNA: an in silico single molecule approach. , 2007, Biopolymers.

[92]  D. Baker,et al.  Automated de novo prediction of native-like RNA tertiary structures , 2007, Proceedings of the National Academy of Sciences.

[93]  Stephen Neidle,et al.  Principles of nucleic acid structure , 2007 .

[94]  Anna Marie Pyle,et al.  Evaluating and learning from RNA pseudotorsional space: quantitative validation of a reduced representation for RNA structure. , 2007, Journal of molecular biology.

[95]  Andrew V. Colasanti,et al.  Properties of the nucleic-acid bases in free and Watson-Crick hydrogen-bonded states: computational insights into the sequence-dependent features of double-helical DNA , 2009, Biophysical Reviews.

[96]  A. Laederach,et al.  Energy barriers, pathways, and dynamics during folding of large, multidomain RNAs. , 2008, Current opinion in chemical biology.

[97]  Ignacio Tinoco,et al.  Characterization of the Mechanical Unfolding of RNA Pseudoknots , 2007, Journal of Molecular Biology.

[98]  Cecilia Clementi,et al.  Mapping folding energy landscapes with theory and experiment. , 2008, Archives of biochemistry and biophysics.

[99]  Changbong Hyeon,et al.  Minimal models for proteins and RNA from folding to function. , 2008, Progress in molecular biology and translational science.

[100]  Feng Ding,et al.  iFoldRNA: three-dimensional RNA structure prediction and folding , 2008, Bioinform..

[101]  F. Ding,et al.  Ab initio folding of proteins with all-atom discrete molecular dynamics. , 2008, Structure.

[102]  F. Major,et al.  The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data , 2008, Nature.

[103]  Magdalena A. Jonikas,et al.  Structural inference of native and partially folded RNA by high-throughput contact mapping , 2008, Proceedings of the National Academy of Sciences.

[104]  S. Whitelam,et al.  The role of collective motion in examples of coarsening and self-assembly. , 2008, Soft matter.

[105]  Hervé Isambert,et al.  The jerky and knotty dynamics of RNA. , 2009, Methods.

[106]  E. Sambriski,et al.  Sequence effects in the melting and renaturation of short DNA oligonucleotides: structure and mechanistic pathways , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[107]  Kanti V. Mardia,et al.  A Probabilistic Model of RNA Conformational Space , 2009, PLoS Comput. Biol..

[108]  Feng Ding,et al.  Native-like RNA tertiary structures using a sequence-encoded cleavage agent and refinement by discrete molecular dynamics. , 2009, Journal of the American Chemical Society.

[109]  Piero Fariselli,et al.  A graph theoretic approach to protein structure selection , 2009, Artif. Intell. Medicine.

[110]  J. Šponer,et al.  Theoretical studies of RNA catalysis: hybrid QM/MM methods and their comparison with MD and QM. , 2009, Methods.

[111]  A. Warshel,et al.  Are mixed explicit/implicit solvation models reliable for studying phosphate hydrolysis? A comparative study of continuum, explicit and mixed solvation models. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[112]  W. Dawson,et al.  Modeling the Chain Entropy of Biopolymers: Unifying Two Different Random Walk Models under One Framework , 2009 .

[113]  Russ B. Altman,et al.  Knowledge-based instantiation of full atomic detail into coarse-grain RNA 3D structural models , 2009, Bioinform..

[114]  Magdalena A. Jonikas,et al.  Coarse-grained modeling of large RNA molecules with knowledge-based potentials and structural filters. , 2009, RNA.

[115]  Timothy C Elston,et al.  Multiscale approaches for studying energy transduction in dynein. , 2009, Physical chemistry chemical physics : PCCP.

[116]  Valentina Tozzini,et al.  Minimalist models for proteins: a comparative analysis , 2010, Quarterly Reviews of Biophysics.

[117]  Shi-Jie Chen,et al.  Predicting loop-helix tertiary structural contacts in RNA pseudoknots. , 2010, RNA.

[118]  Pengyu Y. Ren,et al.  Coarse-grained model for simulation of RNA three-dimensional structures. , 2010, The journal of physical chemistry. B.

[119]  Feng Ding,et al.  On the significance of an RNA tertiary structure prediction. , 2010, RNA.

[120]  Sandro Bottaro,et al.  Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized , 2010, PloS one.

[121]  Adam Liwo,et al.  Coarse‐grained model of nucleic acid bases , 2010, J. Comput. Chem..

[122]  Valentina Tozzini,et al.  Multiscale modeling of proteins. , 2010, Accounts of chemical research.

[123]  J. Šponer,et al.  Comparison of intrinsic stacking energies of ten unique dinucleotide steps in A-RNA and B-DNA duplexes. Can we determine correct order of stability by quantum-chemical calculations? , 2010, The journal of physical chemistry. B.

[124]  Alexander D. MacKerell,et al.  Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field. , 2010, Journal of chemical theory and computation.

[125]  D. Baker,et al.  Atomic accuracy in predicting and designing non-canonical RNA structure , 2010, Nature Methods.

[126]  D. Jost,et al.  Prediction of RNA multiloop and pseudoknot conformations from a lattice-based, coarse-grain tertiary structure model. , 2010, The Journal of chemical physics.

[127]  K. Réblová,et al.  Molecular dynamics simulations suggest that RNA three-way junctions can act as flexible RNA structural elements in the ribosome , 2010, Nucleic acids research.

[128]  P. Derreumaux,et al.  HiRE-RNA: a high resolution coarse-grained energy model for RNA. , 2010, The journal of physical chemistry. B.

[129]  J. Doye,et al.  Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. , 2010, The Journal of chemical physics.

[130]  Arieh Warshel,et al.  Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems. , 2011, Annual review of physical chemistry.

[131]  Kristian Rother,et al.  RNA and protein 3D structure modeling: similarities and differences , 2011, Journal of molecular modeling.

[132]  A. Stuchebrukhov,et al.  Accounting for electronic polarization in non-polarizable force fields. , 2011, Physical chemistry chemical physics : PCCP.

[133]  Shi-Jie Chen,et al.  Physics-based de novo prediction of RNA 3D structures. , 2011, The journal of physical chemistry. B.

[134]  Tobin R Sosnick,et al.  The folding of single domain proteins--have we reached a consensus? , 2011, Current opinion in structural biology.

[135]  Ryuhei Harada,et al.  Exploring the folding free energy landscape of a β-hairpin miniprotein, chignolin, using multiscale free energy landscape calculation method. , 2011, The journal of physical chemistry. B.

[136]  Adelene Y. L. Sim,et al.  Fully differentiable coarse-grained and all-atom knowledge-based potentials for RNA structure evaluation. , 2011, RNA.

[137]  T. Schlick,et al.  Computational approaches to RNA structure prediction, analysis, and design. , 2011, Current opinion in structural biology.

[138]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole-based Molecular Mechanics for Organic Molecules. , 2011, Journal of chemical theory and computation.

[139]  A. Ansari,et al.  Fast folding of RNA pseudoknots initiated by laser temperature-jump. , 2011, Journal of the American Chemical Society.

[140]  Charles L. Brooks,et al.  Surveying implicit solvent models for estimating small molecule absolute hydration free energies , 2011, J. Comput. Chem..

[141]  Marc A. Martí-Renom,et al.  All-atom knowledge-based potential for RNA structure prediction and assessment , 2011, Bioinform..

[142]  Adelene Y. L. Sim,et al.  Modeling and design by hierarchical natural moves , 2012, Proceedings of the National Academy of Sciences.

[143]  D. Turner,et al.  Understanding the role of base stacking in nucleic acids. MD and QM analysis of tandem GA base pairs in RNA duplexes. , 2012, Physical chemistry chemical physics : PCCP.

[144]  Feng Ding,et al.  RNA-Puzzles: a CASP-like evaluation of RNA three-dimensional structure prediction. , 2012, RNA.

[145]  A. Serganov,et al.  Molecular recognition and function of riboswitches. , 2012, Current opinion in structural biology.

[146]  K. Réblová,et al.  Structure and mechanical properties of the ribosomal L1 stalk three-way junction , 2012, Nucleic acids research.

[147]  Adelene Y. L. Sim,et al.  Modeling nucleic acids. , 2012, Current opinion in structural biology.

[148]  Shi-Jie Chen,et al.  Predicting ion-nucleic acid interactions by energy landscape-guided sampling. , 2012, Journal of chemical theory and computation.

[149]  Jennifer L. Knight,et al.  Constant pH Molecular Dynamics Simulations of Nucleic Acids in Explicit Solvent. , 2012, Journal of chemical theory and computation.

[150]  Jérôme Waldispühl,et al.  Towards 3D structure prediction of large RNA molecules: an integer programming framework to insert local 3D motifs in RNA secondary structure , 2012, Bioinform..

[151]  Loren Dean Williams,et al.  Cations in charge: magnesium ions in RNA folding and catalysis. , 2012, Current opinion in structural biology.

[152]  D. Tieleman,et al.  Perspective on the Martini model. , 2013, Chemical Society reviews.

[153]  Michal Otyepka,et al.  How to understand quantum chemical computations on DNA and RNA systems? A practical guide for non-specialists. , 2013, Methods.

[154]  P. Derreumaux,et al.  Coarse-grained simulations of RNA and DNA duplexes. , 2013, The journal of physical chemistry. B.

[155]  A. Liwo,et al.  Mean-field interactions between nucleic-acid-base dipoles can drive the formation of a double helix. , 2013, Physical review letters.

[156]  Michal Otyepka,et al.  Nature and magnitude of aromatic base stacking in DNA and RNA: Quantum chemistry, molecular mechanics, and experiment. , 2013, Biopolymers.

[157]  Jennifer L. Knight,et al.  pH-dependent dynamics of complex RNA macromolecules. , 2013, Journal of chemical theory and computation.

[158]  W G Noid,et al.  Systematic methods for structurally consistent coarse-grained models. , 2013, Methods in molecular biology.

[159]  W G Noid,et al.  Perspective: Coarse-grained models for biomolecular systems. , 2013, The Journal of chemical physics.

[160]  A. Serganov,et al.  A Decade of Riboswitches , 2013, Cell.

[161]  D Thirumalai,et al.  Coarse-grained model for predicting RNA folding thermodynamics. , 2013, The journal of physical chemistry. B.

[162]  Francisco Melo,et al.  WebRASP: a server for computing energy scores to assess the accuracy and stability of RNA 3D structures , 2013, Bioinform..

[163]  Pengyu Ren,et al.  RNA 3D structure prediction by using a coarse-grained model and experimental data. , 2013, The journal of physical chemistry. B.

[164]  J. Doye,et al.  DNA hybridization kinetics: zippering, internal displacement and sequence dependence , 2013, Nucleic acids research.

[165]  W F Drew Bennett,et al.  Improved Parameters for the Martini Coarse-Grained Protein Force Field. , 2013, Journal of chemical theory and computation.

[166]  H. Gong,et al.  A novel implicit solvent model for simulating the molecular dynamics of RNA. , 2013, Biophysical journal.

[167]  Kentaro Shimizu,et al.  A new entropy model for RNA: part II. Persistence-related entropic contributions to RNA secondary structure free energy calculations , 2013 .

[168]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[169]  Marissa G. Saunders,et al.  Coarse-graining methods for computational biology. , 2013, Annual review of biophysics.

[170]  Flavio Romano,et al.  A nucleotide-level coarse-grained model of RNA. , 2014, The Journal of chemical physics.

[171]  Marco Biasini,et al.  Challenging the state of the art in protein structure prediction: Highlights of experimental target structures for the 10th Critical Assessment of Techniques for Protein Structure Prediction Experiment CASP10 , 2014, Proteins.

[172]  Franca Fraternali,et al.  Design and application of implicit solvent models in biomolecular simulations , 2014, Current opinion in structural biology.

[173]  Shi-jie Chen,et al.  Exploring the electrostatic energy landscape for tetraloop-receptor docking. , 2014, Physical chemistry chemical physics : PCCP.

[174]  A. Liwo,et al.  DNA Duplex Formation with a Coarse-Grained Model , 2014, Journal of chemical theory and computation.

[175]  Hashim M. Al-Hashimi,et al.  Coarse Grained Models Reveal Essential Contributions of Topological Constraints to the Conformational Free Energy of RNA Bulges , 2014, The journal of physical chemistry. B.

[176]  Zhiping Weng,et al.  ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers , 2014, Bioinform..

[177]  C. Brooks,et al.  Constant pH molecular dynamics of proteins in explicit solvent with proton tautomerism , 2014, Proteins.

[178]  Stefano Piana,et al.  Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. , 2014, Current opinion in structural biology.

[179]  Janusz M Bujnicki,et al.  Computational modeling of RNA 3D structures, with the aid of experimental restraints , 2014, RNA biology.

[180]  A. Laederach,et al.  Mapping the Kinetic Barriers of a Large RNA Molecule's Folding Landscape , 2014, PloS one.

[181]  Anna Tramontano,et al.  Critical assessment of methods of protein structure prediction (CASP) — round x , 2014, Proteins.

[182]  M. D. Carbajal-Tinoco,et al.  RNA pseudo-knots simulated with a one-bead coarse-grained model. , 2014, The Journal of chemical physics.

[183]  T. Cheatham,et al.  Convergence and reproducibility in molecular dynamics simulations of the DNA duplex d(GCACGAACGAACGAACGC). , 2015, Biochimica et biophysica acta.

[184]  Namhee Kim,et al.  Computational prediction of riboswitch tertiary structures including pseudoknots by RAGTOP: a hierarchical graph sampling approach. , 2015, Methods in enzymology.

[185]  Yasuteru Shigeta,et al.  Simple, yet powerful methodologies for conformational sampling of proteins. , 2015, Physical chemistry chemical physics : PCCP.

[186]  Rhiju Das,et al.  Modeling complex RNA tertiary folds with Rosetta. , 2015, Methods in enzymology.

[187]  I. Hofacker,et al.  Predicting RNA 3D structure using a coarse-grain helix-centered model , 2015, RNA.

[188]  Yasuteru Shigeta,et al.  Enhanced conformational sampling method for proteins based on the TaBoo SeArch algorithm: Application to the folding of a mini‐protein, chignolin , 2015, J. Comput. Chem..

[189]  Robert C. Harris,et al.  Examining the assumptions underlying continuum-solvent models. , 2015, Journal of chemical theory and computation.

[190]  Hsien-Da Huang,et al.  RNAcentral: an international database of ncRNA sequences , 2014, Nucleic Acids Res..

[191]  N. Dokholyan,et al.  Computational methods toward accurate RNA structure prediction using coarse-grained and all-atom models. , 2015, Methods in enzymology.

[192]  Feng Ding,et al.  RNA-Puzzles Round II: assessment of RNA structure prediction programs applied to three large RNA structures , 2015, RNA.

[193]  Janusz M Bujnicki,et al.  Computational modeling of RNA 3D structures and interactions. , 2016, Current opinion in structural biology.

[194]  J. Bujnicki,et al.  SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction , 2015, Nucleic acids research.