Graphs for small multiprocessor interconnection networks

Abstract Let D be the diameter of a graph G and let λ1 be the largest eigenvalue of its (0, 1)-adjacency matrix. We give a proof of the fact that there are exactly 69 non-trivial connected graphs with (D + 1)λ1 ⩽ 9. These 69 graphs all have up to 10 vertices and were recently found to be suitable models for small multiprocessor interconnection networks. We also examine the suitability of integral graphs to model multiprocessor interconnection networks, especially with respect to the load balancing problem. In addition, we classify integral graphs with small values of (D + 1)λ1 in connection with the load balancing problem for multiprocessor systems.

[1]  D. Cvetkovic,et al.  An Introduction to the Theory of Graph Spectra: References , 2009 .

[2]  Dragos Cvetkovic,et al.  A table of connected graphs on six vertices , 1984, Discret. Math..

[3]  Simone Severini,et al.  Parameters of Integral Circulant Graphs and Periodic Quantum Dynamics , 2007 .

[4]  Milan B. Tasic,et al.  Perfect state transfer in integral circulant graphs , 2009, Appl. Math. Lett..

[5]  Edwin R. Hancock,et al.  Eigenspaces for Graphs , 2002, Int. J. Image Graph..

[6]  Aleksandar Ilic,et al.  The energy of unitary cayley graphs , 2009 .

[7]  Zoran Stanić There are exactly 172 connected integral graphs up to 10 vertices. , 2007 .

[8]  Dragoš Cvetković,et al.  A study of eigenspaces of graphs , 1993 .

[9]  Tatjana Davidović,et al.  Application of some graph invariants to the analysis of multiprocessor interconnection networks , 2008 .

[10]  Robert Elsässer,et al.  Sparse topologies with small spectrum size , 2003, Theor. Comput. Sci..

[11]  Dragos Cvetkovic,et al.  Multiprocessor Interconnection Networks with Small tightness , 2009, Int. J. Found. Comput. Sci..

[12]  D. Cvetkovic,et al.  There are exactly 13 connected, cubic, integral graphs , 1975 .

[13]  Ralf Diekmann,et al.  Efficient schemes for nearest neighbor load balancing , 1999, Parallel Comput..

[14]  Dragos Cvetkovic,et al.  on Some Algorithmic Investigations of Star Partitions of Graphs , 1995, Discret. Appl. Math..

[15]  Maria Aguieiras A. de Freitas,et al.  Walks and regular integral graphs , 2007 .

[16]  D. Cvetkovic,et al.  Recent Results in the Theory of Graph Spectra , 2012 .

[17]  Tatjana Davidović,et al.  WELL-SUITED MULTIPROCESSOR TOPOLOGIES WITH SMALL NUMBER OF PROCESSORS , 2008 .

[18]  D. Cvetkovic,et al.  Eigenspaces of graphs: Bibliography , 1997 .

[19]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[20]  H. N. Ramaswamy,et al.  On the Energy of Unitary Cayley Graphs , 2009, Electron. J. Comb..

[21]  Dragoš Cvetković,et al.  A SURVEY ON INTEGRAL GRAPHS , 2002 .

[22]  Michael Doob,et al.  Spectra of graphs , 1980 .

[23]  Lei Wang,et al.  Ringed Petersen spheres connected hypercube interconnection networks , 2005, 10th IEEE International Conference on Engineering of Complex Computer Systems (ICECCS'05).