Equiangular lines and covers of the complete graph
暂无分享,去创建一个
[1] Dustin G. Mixon,et al. Steiner equiangular tight frames , 2010, 1009.5730.
[2] Shayne Waldron,et al. Generalized Welch bound equality sequences are tight fram , 2003, IEEE Trans. Inf. Theory.
[3] Dmitry Fon-Der-Flaass,et al. Distance Regular Covers of Complete Graphs from Latin Squares , 2005, Des. Codes Cryptogr..
[4] Chris Godsil,et al. Covers of Complete Graphs , 1996 .
[5] Chris D. Godsil,et al. Distance regular covers of the complete graph , 1992, J. Comb. Theory, Ser. B.
[6] C. Colbourn,et al. Handbook of Combinatorial Designs , 2006 .
[7] J. J. Seidel,et al. Equilateral point sets in elliptic geometry , 1966 .
[8] Lloyd R. Welch,et al. Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[9] D. M. Appleby. Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .
[10] Chris D. Godsil,et al. ALGEBRAIC COMBINATORICS , 2013 .
[11] Gordon F. Royle,et al. Algebraic Graph Theory , 2001, Graduate texts in mathematics.
[12] C. Colbourn,et al. The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.
[13] Mikhail H. Klin,et al. A new construction of antipodal distance regular covers of complete graphs through the use of Godsil-Hensel matrices , 2011, Ars Math. Contemp..
[14] Willem H. Haemers,et al. Spectra of Graphs , 2011 .
[15] J. J. Seidel,et al. Strongly Regular Graphs Derived from Combinatorial Designs , 1970, Canadian Journal of Mathematics.
[16] A. J. Scott,et al. Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .
[17] Dustin G. Mixon,et al. Kirkman Equiangular Tight Frames and Codes , 2013, IEEE Transactions on Information Theory.
[18] D. M. Appleby. SIC-POVMs and the Extended Clifford Group , 2004 .