Combinatorics, Probability and Computing on the Number of Convex Lattice Polygons on the Number of Convex Lattice Polygons
暂无分享,去创建一个
[1] G. C. Shephard,et al. The difference body of a convex body , 1957 .
[2] C. A. Rogers,et al. An Introduction to the Geometry of Numbers , 1959 .
[3] S. N. Naboko,et al. Conditions for similarity to unitary and self-adjoint operators , 1984 .
[4] Martin Grötschel,et al. The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..
[5] G. Andrews. The Theory of Partitions: Frontmatter , 1976 .
[6] A. Rényi,et al. über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .
[7] László Lovász,et al. Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.
[8] Hans Rademacher,et al. Topics in analytic number theory , 1973 .
[9] È. Vinberg,et al. Invariant convex cones and orderings in Lie groups , 1980 .
[10] G. Szekeres,et al. AN ASYMPTOTIC FORMULA IN THE THEORY OF PARTITIONS , 1951 .
[11] V. I. Arnol'd,et al. Statistics of integral convex polygons , 1980 .
[12] Wolfgang M. Schmidt,et al. Integer points on curves and surfaces , 1985 .
[13] George E. Andrews,et al. A LOWER BOUND FOR THE VOLUME OF STRICTLY CONVEX BODIES WITH MANY BOUNDARY LATTICE POINTS , 1963 .
[14] S. V. Konyagin,et al. A bound, in terms of its volume, for the number of vertices of a convex polyhedron when the vertices have integer coordinates , 1984 .
[15] Shô Iseki,et al. A generalization of a functional equation related to the theory of partitions , 1960 .