Combinatorics, Probability and Computing on the Number of Convex Lattice Polygons on the Number of Convex Lattice Polygons

Note: Professor Pach's number: [093] Reference DCG-ARTICLE-2008-017doi:10.1017/S0963548300000341 Record created on 2008-11-17, modified on 2017-05-12

[1]  G. C. Shephard,et al.  The difference body of a convex body , 1957 .

[2]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[3]  S. N. Naboko,et al.  Conditions for similarity to unitary and self-adjoint operators , 1984 .

[4]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[5]  G. Andrews The Theory of Partitions: Frontmatter , 1976 .

[6]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .

[7]  László Lovász,et al.  Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.

[8]  Hans Rademacher,et al.  Topics in analytic number theory , 1973 .

[9]  È. Vinberg,et al.  Invariant convex cones and orderings in Lie groups , 1980 .

[10]  G. Szekeres,et al.  AN ASYMPTOTIC FORMULA IN THE THEORY OF PARTITIONS , 1951 .

[11]  V. I. Arnol'd,et al.  Statistics of integral convex polygons , 1980 .

[12]  Wolfgang M. Schmidt,et al.  Integer points on curves and surfaces , 1985 .

[13]  George E. Andrews,et al.  A LOWER BOUND FOR THE VOLUME OF STRICTLY CONVEX BODIES WITH MANY BOUNDARY LATTICE POINTS , 1963 .

[14]  S. V. Konyagin,et al.  A bound, in terms of its volume, for the number of vertices of a convex polyhedron when the vertices have integer coordinates , 1984 .

[15]  Shô Iseki,et al.  A generalization of a functional equation related to the theory of partitions , 1960 .