Shock compression of nanoporous silicon carbide at high strain rate

[1]  P. Branicio,et al.  Structural phase transition and amorphization in hexagonal SiC subjected to dynamic loading , 2021, Mechanics of Materials.

[2]  Yongqiang Li,et al.  Influence of pore shape on impact dynamics characteristics of functionally graded brittle materials , 2021, The Journal of Strain Analysis for Engineering Design.

[3]  T. Fu,et al.  Molecular Dynamics Investigation of the Influence of Voids on the Impact Mechanical Behavior of NiTi Shape-Memory Alloy , 2021, Materials.

[4]  A. Molinari,et al.  The role of micro-inertia on the shock structure in porous metals , 2021, Journal of the Mechanics and Physics of Solids.

[5]  Hongliang He,et al.  Numerical modeling of dynamic response and microcracking in shock-loaded polycrystalline transparent ceramic , 2021 .

[6]  Weidong Song,et al.  Molecular dynamics study on the nanovoid collapse and local deformation in shocked Cu50Zr50 metallic glasses , 2021 .

[7]  Yongqiang Li,et al.  High speed crack propagation characteristics of functionally graded brittle materials under ultra-high loading rate , 2021 .

[8]  J. Cui,et al.  Anisotropic shock responses of nanoporous Al by molecular dynamics simulations , 2021, PloS one.

[9]  T. Germann,et al.  Rate dependence and anisotropy of SiC response to ramp and wave-free quasi-isentropic compression , 2021 .

[10]  Yonggang Wang,et al.  Mechanical response and deformation mechanisms of porous PZT95/5 ceramics under shock-wave compression , 2021 .

[11]  Yongqiang Li,et al.  Impact response characteristics and meso-evolution mechanism of functionally gradient brittle materials with pore hole damage , 2021 .

[12]  Yongde Xia,et al.  Porous ceramics: Light in weight but heavy in energy and environment technologies , 2021, Materials Science and Engineering: R: Reports.

[13]  A. Molinari,et al.  Shock structure and spall behavior of porous aluminum , 2020 .

[14]  T. Germann,et al.  On the grain size dependence of shock responses in nanocrystalline sic ceramics at high strain rates , 2020 .

[15]  Yonggang Wang,et al.  Strain Rate and Porosity Effect on Mechanical Characteristics and Depolarization of Porous Poled PZT95/5 Ceramics , 2020, Materials.

[16]  D. Eakins,et al.  Mechanics of shock induced pore collapse in poly(methyl methacrylate) (PMMA): Comparison of simulations and experiments , 2020 .

[17]  Weidong Song,et al.  Molecular dynamics study on dynamic response of void-included aluminum under different loading patterns , 2020 .

[18]  A. Molinari,et al.  Steady shock waves in porous metals: Viscosity and micro-inertia effects , 2020 .

[19]  M. Olbinado,et al.  Collapse dynamics of spherical cavities in a solid under shock loading , 2020, Scientific Reports.

[20]  Z. Sha,et al.  Mechanical properties of nanoporous metallic glasses: Insights from large-scale atomic simulations , 2020 .

[21]  H. Udaykumar,et al.  Tandem Molecular Dynamics and Continuum Studies of Shock‐Induced Pore Collapse in TATB , 2020 .

[22]  M. Olbinado,et al.  Ultra-high-speed x-ray imaging of shock-induced cavity collapse in a solid medium , 2020 .

[23]  J. Wilkerson Anomalous size effects in nanoporous materials induced by high surface energies , 2019, Journal of Materials Research.

[24]  S. Phillpot,et al.  Void collapse and subsequent spallation in Cu50Zr50 metallic glass under shock loading by molecular dynamics simulations , 2019, Journal of Applied Physics.

[25]  T. Germann,et al.  Shock induced damage and fracture in SiC at elevated temperature and high strain rate , 2019, Acta Materialia.

[26]  Hongliang He,et al.  Delayed fracture of porous ceramics under shock-wave compression , 2019, Engineering Fracture Mechanics.

[27]  Yu. V. Zhilin,et al.  Efficiency of the Application of Disperse Materials to Attenuate Reflected Shock Waves , 2019, High Temperature.

[28]  M. Olbinado,et al.  Ultra-high-speed indirect x-ray imaging system with versatile spatiotemporal sampling capabilities. , 2018, Applied optics.

[29]  Kun Wang,et al.  Shock response of nanoporous magnesium by molecular dynamics simulations , 2018, International Journal of Mechanical Sciences.

[30]  C. David,et al.  Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light , 2018 .

[31]  Nirmal Kumar Rai,et al.  Three-dimensional simulations of void collapse in energetic materials , 2018 .

[32]  X. Yao,et al.  Planar impacts on nanocrystalline SiC: a comparison of different potentials , 2018, Journal of Materials Science.

[33]  Hongliang He,et al.  Shock Compression of Porous Ceramics , 2017, Recent Advances in Porous Ceramics.

[34]  David E. Kittell,et al.  Multiscale modeling of shock wave localization in porous energetic material , 2017, 1711.02769.

[35]  Dong Xianlin,et al.  Recent Progress of Porous PZT95/5 Ferroelectric Ceramics , 2018 .

[36]  Hongliang He,et al.  Controllable fracture in shocked ceramics: Shielding one region from severely fractured state with the sacrifice of another region , 2017 .

[37]  W. H. Li,et al.  Shock-induced spall in single and nanocrystalline SiC , 2017 .

[38]  A. Molinari,et al.  The structure of steady shock waves in porous metals , 2017 .

[39]  J. Wilkerson On the micromechanics of void dynamics at extreme rates , 2017 .

[40]  Joachim Schulz,et al.  MHz frame rate hard X-ray phase-contrast imaging using synchrotron radiation. , 2017, Optics express.

[41]  Nirmal Kumar Rai,et al.  Collapse of elongated voids in porous energetic materials: Effects of void orientation and aspect ratio on initiation , 2017 .

[42]  Nirmal Kumar Rai,et al.  High-resolution simulations of cylindrical void collapse in energetic materials: Effect of primary and secondary collapse on initiation thresholds , 2017 .

[43]  M. Meyers,et al.  On the ultimate tensile strength of tantalum , 2017 .

[44]  Yonggang Wang,et al.  Influence of porosity on nonlinear mechanical properties of unpoled porous Pb(Zr0.95Ti0.05)O3 ceramics under uniaxial compression , 2017 .

[45]  W. H. Li,et al.  The spallation of single crystal SiC: The effects of shock pulse duration , 2016 .

[46]  N. Jacques,et al.  Modelling of micro-inertia effects in closed-cell foams with application to acoustic and shock wave propagation , 2016 .

[47]  J. Cui,et al.  Shock responses of nanoporous aluminum by molecular dynamics simulations , 2016, 1610.03905.

[48]  E. Pellicer,et al.  The Influence of Pore Size on the Indentation Behavior of Metallic Nanoporous Materials: A Molecular Dynamics Study , 2016, Materials.

[49]  Hongliang He,et al.  Macroscopic shock plasticity of brittle material through designed void patterns , 2016 .

[50]  S. Luo,et al.  Shock response of open-cell nanoporous Cu foams: Effects of porosity and specific surface area , 2015 .

[51]  R. Xia,et al.  The Role of Computer Simulation in Nanoporous Metals—A Review , 2015, Materials.

[52]  A. Bragov,et al.  Multiscale Simulation of Porous Quasi-Brittle Ceramics Fracture , 2015 .

[53]  Hongliang He,et al.  Mesoscopic deformation features of shocked porous ceramic: Polycrystalline modeling and experimental observations , 2015 .

[54]  H. S. Udaykumar,et al.  Three-dimensional simulations of dynamics of void collapse in energetic materials , 2015 .

[55]  J. Harrigan,et al.  Dynamic stress–strain states for metal foams using a 3D cellular model , 2014 .

[56]  Jingyun Zhang,et al.  Molecular Dynamics Simulations of Plane Shock Loading in SiC , 2014 .

[57]  A. Nakano,et al.  Shock loading on AlN ceramics: A large scale molecular dynamics study , 2013 .

[58]  M. Meyers,et al.  Atomistic simulation of the mechanical response of a nanoporous body-centered cubic metal , 2013 .

[59]  M. Fukushima,et al.  Macro-porous ceramics: processing and properties , 2012 .

[60]  A. Kuksin,et al.  Formation of twins in sapphire under shock wave loading: Atomistic simulations , 2012 .

[61]  A. Swantek,et al.  Collapse of void arrays under stress wave loading , 2010, Journal of Fluid Mechanics.

[62]  Aidan P Thompson,et al.  General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. , 2009, The Journal of chemical physics.

[63]  D. Grady,et al.  SHOCK‐LESS HIGH RATE COMPACTION OF POROUS BRITTLE MATERIALS , 2009 .

[64]  T. Sadowski,et al.  Development of damage state in porous ceramics under compression , 2008 .

[65]  A. Nakano,et al.  Atomistic damage mechanisms during hypervelocity projectile impact on AlN: A large-scale parallel molecular dynamics simulation study , 2008 .

[66]  A. Nakano,et al.  Deformation mechanisms and damage in α-alumina under hypervelocity impact loading , 2008 .

[67]  F. Hild,et al.  Shock enhancement of cellular structures under impact loading: Part II analysis , 2007 .

[68]  A. Nakano,et al.  Fracture initiation mechanisms in α-alumina under hypervelocity impact , 2007 .

[69]  A. Nakano,et al.  Hypervelocity impact induced deformation modes in α-alumina , 2007 .

[70]  T. Germann,et al.  Molecular dynamics simulation of dynamical response of perfect and porous Ni/Al nanolaminates under shock loading , 2007 .

[71]  Rajiv K. Kalia,et al.  Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide , 2007 .

[72]  Priya Vashishta,et al.  Shock-induced structural phase transition, plasticity, and brittle cracks in aluminum nitride ceramic. , 2006, Physical review letters.

[73]  Stephen R Reid,et al.  Dynamic compressive strength properties of aluminium foams. Part I—experimental data and observations , 2005 .

[74]  Eduardo M. Bringa,et al.  Atomistic mechanism of shock-induced void collapse in nanoporous metals , 2005 .

[75]  John W. Gillespie,et al.  Dynamics of metal foam deformation during Taylor cylinder–Hopkinson bar impact experiment , 2003 .

[76]  R. E. Setchell Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: Hugoniot states and constitutive mechanical properties , 2003 .

[77]  B. Tuttle,et al.  Effects of Initial Porosity on the Shock Response of Normally Poled PZT 95/5 , 2002 .

[78]  L. A. Merzhievskii Simulation of the dynamic compression of porous Al2O3 , 1999 .

[79]  Stephen R Reid,et al.  Dynamic uniaxial crushing of wood , 1997 .

[80]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[81]  Michael F. Ashby,et al.  The mechanical properties of cellular solids , 1983 .