Plasticity in single neuron and circuit computations

Plasticity in neural circuits can result from alterations in synaptic strength or connectivity, as well as from changes in the excitability of the neurons themselves. To better understand the role of plasticity in the brain, we need to establish how brain circuits work and the kinds of computations that different circuit structures achieve. By linking theoretical and experimental studies, we are beginning to reveal the consequences of plasticity mechanisms for network dynamics, in both simple invertebrate circuits and the complex circuits of mammalian cerebral cortex.

[1]  Ramón y Cajal,et al.  Histologie du système nerveux de l'homme & des vertébrés , 1909 .

[2]  D. Hubel,et al.  Shape and arrangement of columns in cat's striate cortex , 1963, The Journal of physiology.

[3]  G. P. Moore,et al.  Statistical analysis and functional interpretation of neuronal spike data. , 1966, Annual review of physiology.

[4]  W. Rall Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. , 1967, Journal of neurophysiology.

[5]  W. Rall Time constants and electrotonic length of membrane cylinders and neurons. , 1969, Biophysical journal.

[6]  J Szentagothai,et al.  [Neuronal circuits of the cerebral cortex]. , 1970, Bulletin de l'Academie royale de medecine de Belgique.

[7]  J Rinzel,et al.  Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. , 1973, Biophysical journal.

[8]  F. G. Worden,et al.  The neurosciences : fourth study program , 1979 .

[9]  Allen I. Selverston,et al.  Are central pattern generators understandable? , 1980, Behavioral and Brain Sciences.

[10]  C. Prosser F.O. Schmitt F.G. , 1980, Neuroscience.

[11]  S. Laughlin,et al.  Predictive coding: a fresh view of inhibition in the retina , 1982, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[12]  J. Szentágothai The modular architectonic principle of neural centers. , 1983, Reviews of physiology, biochemistry and pharmacology.

[13]  D. Rose,et al.  Models of the visual cortex , 1985 .

[14]  W. Singer,et al.  Modulation of visual cortical plasticity by acetylcholine and noradrenaline , 1986, Nature.

[15]  R. Lewin The book , 1986, Nature.

[16]  G. Shepherd,et al.  Logic operations are properties of computer-simulated interactions between excitable dendritic spines , 1987, Neuroscience.

[17]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[18]  Idan Segev,et al.  Methods in Neuronal Modeling , 1988 .

[19]  D. McCormick Cholinergic and noradrenergic modulation of thalamocortical processing , 1989, Trends in Neurosciences.

[20]  P A Getting,et al.  Emerging principles governing the operation of neural networks. , 1989, Annual review of neuroscience.

[21]  Richard Durbin,et al.  The computing neuron , 1989 .

[22]  M. Steriade,et al.  Brainstem Control of Wakefulness and Sleep , 1990, Springer US.

[23]  R. Douglas,et al.  A functional microcircuit for cat visual cortex. , 1991, The Journal of physiology.

[24]  Xiao-Jing Wang,et al.  Alternating and Synchronous Rhythms in Reciprocally Inhibitory Model Neurons , 1992, Neural Computation.

[25]  A. Peters,et al.  Neuronal organization in area 17 of cat visual cortex. , 1993, Cerebral cortex.

[26]  A. M. Smith,et al.  A century after cajal. , 1993, Science.

[27]  William R. Softky,et al.  Sub-millisecond coincidence detection in active dendritic trees , 1994, Neuroscience.

[28]  M. Bear,et al.  Hebbian synapses in visual cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  Bartlett W. Mel,et al.  Information Processing in Dendritic Trees , 1994, Neural Computation.

[30]  Kurt Wiesenfeld,et al.  Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs , 1995, Nature.

[31]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[32]  Geoffrey E. Hinton,et al.  The "wake-sleep" algorithm for unsupervised neural networks. , 1995, Science.

[33]  M M Merzenich,et al.  Temporal information transformed into a spatial code by a neural network with realistic properties , 1995, Science.

[34]  P. Schwindt,et al.  Amplification of synaptic current by persistent sodium conductance in apical dendrite of neocortical neurons. , 1995, Journal of neurophysiology.

[35]  W. O. Friesen,et al.  Reciprocal inhibition: A mechanism underlying oscillatory animal movements , 1994, Neuroscience & Biobehavioral Reviews.

[36]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[37]  D. Johnston,et al.  Active properties of neuronal dendrites. , 1996, Annual review of neuroscience.

[38]  Paul S. Katz,et al.  Intrinsic neuromodulation: altering neuronal circuits from within , 1996, Trends in Neurosciences.

[39]  E. Marder,et al.  Mechanisms of oscillation in dynamic clamp constructed two-cell half-center circuits. , 1996, Journal of neurophysiology.

[40]  E Marder,et al.  Memory from the dynamics of intrinsic membrane currents. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[41]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[42]  D. Tank,et al.  Dendritic Integration in Mammalian Neurons, a Century after Cajal , 1996, Neuron.

[43]  V. Han,et al.  Synaptic plasticity in a cerebellum-like structure depends on temporal order , 1997, Nature.

[44]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[45]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[46]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[47]  R. Harris-Warrick,et al.  Distributed Effects of Dopamine Modulation in the Crustacean Pyloric Network a , 1998, Annals of the New York Academy of Sciences.

[48]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[49]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[50]  Prof. Dr. Dr. Valentino Braitenberg,et al.  Cortex: Statistics and Geometry of Neuronal Connectivity , 1998, Springer Berlin Heidelberg.

[51]  Mnh,et al.  Histologie du Système Nerveux de Lʼhomme et des Vertébrés , 1998 .

[52]  R. G. Morris D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949 , 1999, Brain Research Bulletin.

[53]  J. Magee Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons , 1999, Nature Neuroscience.

[54]  Jeffrey C. Magee,et al.  Dendritic I h normalizes temporal summation in hippocampal CA 1 neurons , 1999 .

[55]  E. Marder,et al.  Activity-Dependent Regulation of Potassium Currents in an Identified Neuron of the Stomatogastric Ganglion of the Crab Cancer borealis , 1999, The Journal of Neuroscience.

[56]  Niraj S. Desai,et al.  Plasticity in the intrinsic excitability of cortical pyramidal neurons , 1999, Nature Neuroscience.

[57]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[58]  A. Roskies The Binding Problem , 1999, Neuron.

[59]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[60]  A. Destexhe,et al.  Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[61]  G. Stuart,et al.  Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[62]  A. Thomson Facilitation, augmentation and potentiation at central synapses , 2000, Trends in Neurosciences.

[63]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[64]  E. Ahissar,et al.  A neuronal analogue of state-dependent learning , 2000, Nature.

[65]  J. Kao,et al.  Compartmentalized and Binary Behavior of Terminal Dendrites in Hippocampal Pyramidal Neurons , 2001, Science.

[66]  E. Kandel The Molecular Biology of Memory Storage: A Dialogue Between Genes and Synapses , 2001, Science.

[67]  M. Ito,et al.  Cerebellar long-term depression: characterization, signal transduction, and functional roles. , 2001, Physiological reviews.

[68]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[69]  R. Stickgold,et al.  Sleep, Learning, and Dreams: Off-line Memory Reprocessing , 2001, Science.

[70]  E. Marder,et al.  Global Structure, Robustness, and Modulation of Neuronal Models , 2001, The Journal of Neuroscience.

[71]  A. Destexhe,et al.  Correlation detection and resonance in neural systems with distributed noise sources. , 2001, Physical review letters.

[72]  K. Martin,et al.  Synaptic tagging — who's it? , 2002, Nature Reviews Neuroscience.

[73]  Eve Marder,et al.  Cellular, synaptic and network effects of neuromodulation , 2002, Neural Networks.

[74]  D. Long Probabilistic Models of the Brain. , 2002 .

[75]  M. P. Nusbaum,et al.  A small-systems approach to motor pattern generation , 2002, Nature.

[76]  Glenn C. Turner,et al.  Oscillations and Sparsening of Odor Representations in the Mushroom Body , 2002, Science.

[77]  P. J. Sjöström,et al.  Spike timing, calcium signals and synaptic plasticity , 2002, Current Opinion in Neurobiology.

[78]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[79]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[80]  H. Markram,et al.  Stereotypy in neocortical microcircuits , 2002, Trends in Neurosciences.

[81]  L. Abbott,et al.  Redundancy Reduction and Sustained Firing with Stochastic Depressing Synapses , 2002, The Journal of Neuroscience.

[82]  G. Shepherd,et al.  Emerging rules for the distributions of active dendritic conductances , 2002, Nature Reviews Neuroscience.

[83]  Richard Hans Robert Hahnloser,et al.  An ultra-sparse code underliesthe generation of neural sequences in a songbird , 2002, Nature.

[84]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[85]  Eve Marder,et al.  Modeling stability in neuron and network function: the role of activity in homeostasis. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[86]  D. Debanne,et al.  Long-term plasticity of intrinsic excitability: learning rules and mechanisms. , 2003, Learning & memory.

[87]  Maria V. Sanchez-Vives,et al.  Adaptation and temporal decorrelation by single neurons in the primary visual cortex. , 2003, Journal of neurophysiology.

[88]  T. Sejnowski,et al.  Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. , 2003, Physiological reviews.

[89]  Andrea Hasenstaub,et al.  Barrages of Synaptic Activity Control the Gain and Sensitivity of Cortical Neurons , 2003, The Journal of Neuroscience.

[90]  Lyle J. Graham,et al.  Orientation and Direction Selectivity of Synaptic Inputs in Visual Cortical Neurons A Diversity of Combinations Produces Spike Tuning , 2003, Neuron.

[91]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[92]  Michael Rudolph,et al.  A Fast-Conducting, Stochastic Integrative Mode for Neocortical Neurons InVivo , 2003, The Journal of Neuroscience.

[93]  D. Linden,et al.  The other side of the engram: experience-driven changes in neuronal intrinsic excitability , 2003, Nature Reviews Neuroscience.

[94]  Bruce R. Johnson,et al.  Activity-Independent Homeostasis in Rhythmically Active Neurons , 2003, Neuron.

[95]  Bard Ermentrout,et al.  When inhibition not excitation synchronizes neural firing , 1994, Journal of Computational Neuroscience.

[96]  A. Baranyi,et al.  Conditioned changes of synaptic transmission in the motor cortex of the cat , 1978, Experimental Brain Research.

[97]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[98]  Ch. von der Malsburg,et al.  A neural cocktail-party processor , 1986, Biological Cybernetics.

[99]  P. Földiák,et al.  Forming sparse representations by local anti-Hebbian learning , 1990, Biological Cybernetics.

[100]  Eve Marder,et al.  The dynamic clamp comes of age , 2004, Trends in Neurosciences.

[101]  Carson C. Chow,et al.  Synchronization and Oscillatory Dynamics in Heterogeneous, Mutually Inhibited Neurons , 1998, Journal of Computational Neuroscience.