The Oligogalacturonate-specific Porin KdgM of Erwinia chrysanthemi Belongs to a New Porin Family*

The phytopathogenic Gram-negative bacteria Erwinia chrysanthemi secretes pectinases, which are able to degrade the pectic polymers of plant cell walls, and uses the degradation products as a carbon source for growth. We characterized a major outer membrane protein, KdgM, whose synthesis is strongly induced in the presence of pectic derivatives. The corresponding gene was characterized. Analysis of transcriptional fusions showed that the kdgM expression is controlled by the general repressor of pectinolytic genes, KdgR, by the repressor of hexuronate catabolism genes, ExuR, by the pectinase gene repressor, PecS, and by catabolite repression via the cyclic AMP receptor protein (CRP) transcriptional activator. A kdgM mutant is unable to grow on oligogalacturonides longer than trimers, and its virulence is affected. Electrophysiological experiments with planar lipid bilayers showed that KdgM behaves like a voltage-dependent porin that is slightly selective for anions and that exhibits fast block in the presence of trigalacturonate. In contrast to most porins, KdgM seems to be monomeric. KdgM has no homology with currently known porins, but proteins similar to KdgM are present in several bacteria. Therefore, these proteins might constitute a new family of porin channels.

[1]  Rajeev Misra,et al.  Biochemistry and Regulation of a NovelEscherichia coli K-12 Porin Protein, OmpG, Which Produces Unusually Large Channels , 1998, Journal of bacteriology.

[2]  M. S. Francisco,et al.  Digalacturonic acid uptake in Erwinia chrysanthemi , 1996 .

[3]  J. Mergaert,et al.  Phylogenetic position of phytopathogens within the Enterobacteriaceae. , 1998, Systematic and applied microbiology.

[4]  N. Orange,et al.  Ionophore properties of OmpA of Escherichia coli. , 1993, Biochimica et biophysica acta.

[5]  N. Hugouvieux-Cotte-Pattat,et al.  Lactose metabolism in Erwinia chrysanthemi , 1985, Journal of bacteriology.

[6]  P. van Gelder,et al.  Structure and function of bacterial outer membrane proteins: barrels in a nutshell , 2000, Molecular microbiology.

[7]  D. Expert,et al.  The cyclic AMP receptor protein is the main activator of pectinolysis genes in Erwinia chrysanthemi , 1997, Journal of bacteriology.

[8]  G. Condemine,et al.  The Erwinia chrysanthemi pecT gene regulates pectinase gene expression , 1996, Journal of bacteriology.

[9]  V. Shevchik,et al.  Analysis of three clustered polygalacturonase genes in Erwinia chrysanthemi 3937 revealed an anti‐repressor function for the PecS regulator , 1999, Molecular microbiology.

[10]  V. Shevchik,et al.  The Exopolygalacturonate Lyase PelW and the Oligogalacturonate Lyase Ogl, Two Cytoplasmic Enzymes of Pectin Catabolism in Erwinia chrysanthemi 3937 , 1999, Journal of bacteriology.

[11]  J. Preiss,et al.  Alginic acid metabolism in bacteria. I. Enzymatic formation of unsaturated oligosac-charides and 4-deoxy-L-erythro-5-hexoseulose uronic acid. , 1962, The Journal of biological chemistry.

[12]  Edward Moczydlowski,et al.  Single-Channel Enzymology , 1986 .

[13]  P. Matsudaira,et al.  Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. , 1987, The Journal of biological chemistry.

[14]  H. Jung,et al.  Binding of Clostridium botulinum type B toxin to rat brain synaptosome. , 1990, FEMS microbiology letters.

[15]  S. Bezrukov,et al.  Probing sugar translocation through maltoporin at the single channel level , 2000, FEBS letters.

[16]  Hiroshi Nikaido,et al.  OmpA protein of Escherichia coli outer membrane occurs in open and closed channel forms. , 1994, The Journal of biological chemistry.

[17]  N. Hugouvieux-Cotte-Pattat,et al.  Two transporters, TogT and TogMNAB, are responsible for oligogalacturonide uptake in Erwinia chrysanthemi 3937 , 2001, Molecular microbiology.

[18]  H. Bayley,et al.  Biochemical and biophysical characterization of OmpG: A monomeric porin. , 2000, Biochemistry.

[19]  F. Pattus,et al.  The selectivity filter of voltage‐dependent channels formed by phosphoporin (PhoE protein) from E. coli. , 1986, The EMBO journal.

[20]  F. Pattus,et al.  Selectivity for maltose and maltodextrins of maltoporin, a pore‐forming protein of E. coli outer membrane , 1987, FEBS letters.

[21]  N. Hugouvieux-Cotte-Pattat,et al.  Use of Mu-lac Insertions to Study the Secretion of Pectate Lyases by Erwinia chrysanthemi , 1987 .

[22]  G. Condemine,et al.  Isolation of Erwinia chrysanthemi kduD mutants altered in pectin degradation , 1986, Journal of bacteriology.

[23]  A. Toussaint,et al.  phiEC2, a new generalized transducing phage of Erwinia chrysanthemi. , 1984, Virology.

[24]  J. Benen,et al.  Modes of Action of Five Different Endopectate Lyases from Erwinia chrysanthemi 3937 , 1999 .

[25]  M. Besnard,et al.  Electrophysiological Characteristics of the PhoE Porin Channel from Escherichia coli. Implications for the Possible Existence of a Superfamily of Ion Channels , 1997, The Journal of Membrane Biology.

[26]  H. Schägger,et al.  Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. , 1987, Analytical biochemistry.

[27]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[28]  W. Nasser,et al.  Antagonistic effect of CRP and KdgR in the transcription control of the Erwinia chrysanthemi pectinolysis genes , 1997, Molecular microbiology.

[29]  J. Tommassen,et al.  Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. , 1991, Journal of molecular biology.

[30]  N. Hugouvieux-Cotte-Pattat,et al.  Hexuronate catabolism in Erwinia chrysanthemi , 1987, Journal of bacteriology.

[31]  H. Nikaido,et al.  Porins and specific diffusion channels in bacterial outer membranes. , 1994, The Journal of biological chemistry.

[32]  G. Condemine,et al.  Regulation of pectinolysis in Erwinia chrysanthemi. , 1996, Annual review of microbiology.

[33]  Winfried Boos,et al.  Maltose/Maltodextrin System of Escherichia coli: Transport, Metabolism, and Regulation , 1998, Microbiology and Molecular Biology Reviews.

[34]  J. Rosenbusch,et al.  Matrix protein in planar membranes: clusters of channels in a native environment and their functional reassembly. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[35]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[36]  R. Benz,et al.  Pore formation by LamB of Escherichia coli in lipid bilayer membranes , 1986, Journal of bacteriology.

[37]  R. Benz,et al.  Outer-membrane protein PhoE from Escherichia coli forms anion-selective pores in lipid-bilayer membranes. , 1984, European journal of biochemistry.

[38]  A. Collmer,et al.  Marker-exchange mutagenesis of a pectate lyase isozyme gene in Erwinia chrysanthemi , 1985, Journal of bacteriology.

[39]  G. Schulz,et al.  Structure of the outer membrane protein A transmembrane domain , 1998, Nature Structural Biology.

[40]  A. Kotoujansky,et al.  Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulase , 1984, Journal of bacteriology.

[41]  G. Salmond,et al.  Characterization of the Erwinia chrysanthemi expI–expR locus directing the synthesis of two N‐acyl‐homoserine lactone signal molecules , 1998, Molecular microbiology.

[42]  N. Hugouvieux-Cotte-Pattat,et al.  Comparative analysis of the five major Erwinia chrysanthemi pectate lyases: enzyme characteristics and potential inhibitors , 1997, Journal of bacteriology.

[43]  Nicolas Blot,et al.  Identification of TogMNAB, an ABC transporter which mediates the uptake of pectic oligomers in Erwinia chrysanthemi 3937 , 2001, Molecular microbiology.

[44]  G. Condemine,et al.  Tn5 insertion in kdgR, a regulatory gene of the polygalacturonate pathway in Erwinia chrysanthemi , 1987 .

[45]  G. Condemine,et al.  Analysis of an Erwinia chrysanthemi gene cluster involved in pectin degradation , 1991, Molecular microbiology.

[46]  W. Nasser,et al.  Purification and functional characterization of PecS, a regulator of virulence‐factor synthesis in Erwinia chrysanthemi , 1996, Molecular microbiology.

[47]  J. Benen,et al.  Characterization of the Exopolygalacturonate Lyase PelX of Erwinia chrysanthemi 3937 , 1999, Journal of bacteriology.

[48]  A. Collmer,et al.  Impaired induction and self-catabolite repression of extracellular pectate lyase in Erwinia chrysanthemi mutants deficient in oligogalacturonide lyase. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[49]  L. Ingram,et al.  Differential depolymerization mechanisms of pectate lyases secreted by Erwinia chrysanthemi EC16 , 1992, Journal of bacteriology.

[50]  L. Tamm,et al.  Refolded Outer Membrane Protein A of Escherichia coliForms Ion Channels with Two Conductance States in Planar Lipid Bilayers* , 2000, The Journal of Biological Chemistry.

[51]  A. Pugsley The complete general secretory pathway in gram-negative bacteria. , 1993, Microbiological reviews.

[52]  G. Condemine,et al.  Some of the out genes involved in the secretion of pectate lyases in Erwinia chrysanthemi are regulated by kdgR , 1992, Molecular microbiology.

[53]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .

[54]  J E Gander,et al.  Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. , 1972, The Journal of biological chemistry.

[55]  D. Kobayashi,et al.  Molecular cloning and sequencing of a pectate lyase gene from Yersinia pseudotuberculosis , 1988, Journal of bacteriology.

[56]  G. Salmond,et al.  Extracellular and periplasmic isoenzymes of pectate lyase from Erwinia carotovora subspecies carotovora belong to different gene families , 1989, Molecular microbiology.

[57]  E. Sugawara,et al.  Pore-forming activity of OmpA protein of Escherichia coli. , 1992, The Journal of biological chemistry.

[58]  A. Pugsley,et al.  Molecular characterization of PulE, a protein required for pullulanase secretion , 1994, Molecular microbiology.

[59]  K. Nikaido,et al.  Identification and characterization of porins in Pseudomonas aeruginosa. , 1991, The Journal of biological chemistry.

[60]  C. Tate,et al.  Mapping, cloning, expression, and sequencing of the rhaT gene, which encodes a novel L-rhamnose-H+ transport protein in Salmonella typhimurium and Escherichia coli. , 1992, The Journal of biological chemistry.

[61]  F. Barras,et al.  EXTRACELLULAR ENZYMES AND PATHOGENESIS OF SOFT-ROT ERWINIA , 1994 .

[62]  W. Nasser,et al.  Purification and functional characterization of the KdgR protein, a major repressor of pectinolysis genes of Erwinia chrysanthemi , 1992, Molecular microbiology.

[63]  G. Condemine,et al.  Specific interactions of Erwinia chrysanthemi KdgR repressor with different operators of genes involved in pectinolysis. , 1994, Journal of molecular biology.

[64]  W. Nasser,et al.  Characterization of kdgR, a gene of Erwinia chrysanthemi that regulates pectin degradation , 1991, Molecular microbiology.

[65]  J. Robert-Baudouy,et al.  pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi , 1994, Molecular microbiology.