Full-wave simulation of electromagnetic coupling effects in RF and mixed-signal ICs using a time-domain finite-element method

This paper describes the computer simulation and modeling of distributed electromagnetic coupling effects in analog and mixed-signal integrated circuits. Distributed electromagnetic coupling effects include magnetic coupling of adjacent interconnects and/or planar spiral inductors, substrate coupling due to stray electric currents in a conductive substrate, and full-wave electromagnetic radiation. These coupling mechanisms are inclusively simulated by solving the full-wave Maxwell's equations using a three-dimensional (3-D) time-domain finite-element method. This simulation approach is quite general and can be used for circuit layouts that include isolation wells, guard rings, and 3-D metallic structures. A state-variable behavioral modeling procedure is used to construct simple linear models that mimic the distributed electromagnetic effects. These state-variable models can easily be incorporated into a VHDL-AMS simulation providing a means to include distributed electromagnetic effects into a circuit simulation.

[1]  Zhiheng Chen,et al.  Noise coupling in heavily and lightly doped substrate from planar spiral inductor , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[2]  A. Pun,et al.  Substrate noise coupling through planar spiral inductor , 1998 .

[3]  Shoichi Masui,et al.  Experimental results and modeling techniques for substrate noise in mixed-signal integrated circuits , 1993 .

[4]  S. Sali,et al.  Modeling of electromagnetically coupled substrate noise in FLASH A/D converters , 2003 .

[5]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[6]  Ernst Christen,et al.  Vhdl-ams---a hardware description language for analog and mixed-signal applications , 1999 .

[7]  Robert G. Meyer,et al.  Modeling and analysis of substrate coupling in integrated circuits , 1995, Proceedings of the IEEE 1995 Custom Integrated Circuits Conference.

[8]  Robert G. Meyer,et al.  Modeling and analysis of substrate coupling in integrated circuits , 1996 .

[9]  Michael S. McCorquodale,et al.  Study and simulation of CMOS LC oscillator phase noise and jitter , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[10]  L. M. Silveira,et al.  Multilevel finite difference methods for the characterization of substrate coupling in deep sub-micron designs , 1999, Proceedings. XII Symposium on Integrated Circuits and Systems Design (Cat. No.PR00387).

[11]  Jianming Jin,et al.  A general approach for the stability analysis of the time-domain finite-element method for electromagnetic simulations , 2002 .

[12]  David J. Allstot,et al.  Verification techniques for substrate coupling and their application to mixed-signal IC design , 1996 .

[13]  G. Vandersteen,et al.  Characterization of substrate noise impact on RF CMOS integrated circuits in lightly doped substrates , 2003, Proceedings of the 20th IEEE Instrumentation Technology Conference (Cat. No.03CH37412).

[14]  G. Smith,et al.  Numerical Solution of Partial Differential Equations: Finite Difference Methods , 1978 .

[15]  João Paulo Costa,et al.  Efficient techniques for accurate modeling and simulation of substrate coupling in mixed-signal IC's , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[16]  Y. Danto,et al.  Behavioral modeling of analogue and mixed integrated systems with VHDL-AMS for RF applications , 2002, Proceedings. 15th Symposium on Integrated Circuits and Systems Design.

[17]  Diego Mateo,et al.  Modeling and evaluation of substrate noise induced by interconnects , 2003, 2003 Design, Automation and Test in Europe Conference and Exhibition.

[18]  D. White Numerical dispersion of a vector finite element method on skewed hexahedral grids , 2000 .

[19]  J. Tomas,et al.  Behavioural modelling of phase noise and jitter in voltage-controlled oscillators with VHDL-AMS , 2002, ICCSC'02. 1st IEEE International Conference on Circuits and Systems for Communications. Proceedings (IEEE Cat. No.02EX605).

[20]  Jian-Ming Jin,et al.  A fast time-domain finite element-boundary integral method for electromagnetic analysis , 2001 .

[21]  D. White Numerical Modeling of Optical Gradient Traps Using the Vector Finite Element Method , 2000 .

[22]  T.S. Fiez,et al.  A scalable substrate noise coupling model for design of mixed-signal IC's , 2000, IEEE Journal of Solid-State Circuits.

[23]  David J. Allstot,et al.  Simulation techniques and solutions for mixed-signal coupling in integrated circuits , 1994 .

[24]  Michael B. Steer,et al.  Foundations of Interconnect and Microstrip Design , 2000 .

[25]  Behzad Razavi,et al.  Oscillator jitter due to supply and substrate noise , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).

[26]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[27]  Tapan K. Sarkar,et al.  Iterative and Self-Adaptive Finite-Elements in Electromagnetic Modeling , 1998 .

[28]  D. J. Allstot,et al.  Design and optimization of CMOS RF power amplifiers , 2001, IEEE J. Solid State Circuits.

[29]  Ali M. Niknejad,et al.  Numerically stable Green function for modeling and analysis of substrate coupling in integrated circuits , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[30]  Raminderpal Singh FastCap: A Multipole Accelerated 3D Capacitance Extraction Program , 2002 .

[31]  D. J. Allstot,et al.  Substrate coupling in mixed-mode and RF integrated circuits , 1997, Proceedings. Tenth Annual IEEE International ASIC Conference and Exhibit (Cat. No.97TH8334).

[32]  S. Kapur,et al.  N-body problems: IES3: Efficient electrostatic and electromagnetic simulation , 1998, IEEE Computational Science and Engineering.

[33]  Kartikeya Mayaram,et al.  A scalable substrate noise coupling model for mixed-signal ICs , 1999, 1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051).

[34]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[35]  Magdalena Salazar-Palma,et al.  Iterative and self-adaptive finite-elements in electromagnetic modeling , 1998 .

[36]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[37]  F. Herzel,et al.  Active substrate noise suppression in mixed-signal circuits using on-chip driven guard rings , 2000, Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044).

[38]  Linda R. Petzold,et al.  Algorithms and software for ordinary differential equations and differential-algebraic equations, part II: higher-order methods and software packages , 1995 .

[39]  Xavier Aragones,et al.  Experimental comparison of substrate noise coupling using different wafer types , 1999 .

[40]  L. Petzold,et al.  Algorithms and software for ordinary differential equations and differential-algebraic equations, part I: Euler methods and error estimation , 1995 .

[41]  D. J. Allstot,et al.  A 0.5-8.5 GHz fully differential CMOS distributed amplifier , 2002 .

[42]  Mattan Kamon,et al.  FASTHENRY: a multipole-accelerated 3-D inductance extraction program , 1994 .

[43]  David J. Allstot,et al.  Monolithic transformers and their application in a differential CMOS RF low-noise amplifier , 1998, IEEE J. Solid State Circuits.

[44]  Behzad Razavi,et al.  A study of oscillator jitter due to supply and substrate noise , 1999 .

[45]  Mattan Kamon,et al.  FastHenry: A Multipole-Accelerated 3-D Inductance Extraction Program , 1993, 30th ACM/IEEE Design Automation Conference.

[46]  J. M. Casalta,et al.  Substrate coupling evaluation in BiCMOS technology , 1997 .

[47]  Ali M. Niknejad,et al.  Design, Simulation and Applications of Inductors and Transformers for Si RF ICs , 2006 .

[48]  A. Bossavit Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements , 1997 .

[49]  Daniel A. White,et al.  A Vector Finite Element Time-Domain Method for Solving Maxwell's Equations on Unstructured Hexahedral Grids , 2001, SIAM J. Sci. Comput..

[50]  Jacob K. White,et al.  FastCap: a multipole accelerated 3-D capacitance extraction program , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[51]  U. Navsariwala,et al.  An unconditionally stable finite element time-domain solution of the vector wave equation , 1995 .

[52]  Measuring mixed-signal substrate coupling , 2001, IEEE Trans. Instrum. Meas..

[53]  S. Kapur,et al.  IES/sup 3/: efficient electrostatic and electromagnetic simulation , 1998 .

[54]  Luis Miguel Silveira,et al.  Efficient techniques for accurate modeling and simulation of substrate coupling in mixed-signal ICs , 1998, Proceedings Design, Automation and Test in Europe.

[55]  A. Niknejad,et al.  Analysis of eddy-current losses over conductive substrates with applications to monolithic inductors and transformers , 2001 .

[56]  Wai Lok Woo,et al.  Efficient methods for modelling substrate coupling in mixed-signal integrated circuits , 2001 .

[57]  Jacob K. White,et al.  A precorrected-FFT method for electrostatic analysis of complicated 3-D structures , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[58]  Rob A. Rutenbar,et al.  Addressing substrate coupling in mixed-mode ICs: simulation and power distribution synthesis , 1994, IEEE J. Solid State Circuits.

[59]  D. J. Allstot,et al.  Computer-aided design considerations for mixed-signal coupling in RF integrated circuits , 1998 .

[60]  Ali M. Niknejad,et al.  Analysis, design, and optimization of spiral inductors and transformers for Si RF ICs , 1998, IEEE J. Solid State Circuits.