Study on the Effects of Pseudorandom Generation Quality on the Performance of Differential Evolution

Experiences in the field of Monte Carlo methods indicate that the quality of a random number generator is exceedingly significant for obtaining good results. This result has not been demonstrated in the field of evolutionary optimization, and many practitioners of the field assume that the choice of the generator is superfluous and fail to document this aspect of their algorithm. In this paper, we demonstrate empirically that the requirement of high quality generator does not hold in the case of Differential Evolution.

[1]  James A. Foster,et al.  How random generator quality impacts genetic algorithm performance , 2002 .

[2]  Ville Tirronen,et al.  Sparkline Histograms for Comparing Evolutionary Optimization Methods , 2010, IJCCI.

[3]  James A. Foster,et al.  How Random Generator Quality Impacts GA Performance , 2002, GECCO.

[4]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[5]  Francisco Herrera,et al.  Editorial scalability of evolutionary algorithms and other metaheuristics for large-scale continuous optimization problems , 2011, Soft Comput..

[6]  G. Marsaglia Random numbers fall mainly in the planes. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[8]  G. Marsaglia,et al.  A New Class of Random Number Generators , 1991 .

[9]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[10]  Richard P. Brent,et al.  Uniform random number generators for supercomputers , 1992 .

[11]  Peter Hellekalek Don't trust parallel Monte Carlo! , 1998, Workshop on Parallel and Distributed Simulation.

[12]  Jason Wittenberg,et al.  Clarify: Software for Interpreting and Presenting Statistical Results , 2003 .

[13]  P. D. Coddington,et al.  Analysis of random number generators using Monte Carlo simulation , 1993, cond-mat/9309017.

[14]  Vitaliy Feoktistov Differential Evolution: In Search of Solutions , 2006 .

[15]  Mark M. Meysenburg,et al.  Randomness and GA performance, revisited , 1999 .

[16]  Vitaliy Feoktistov,et al.  Differential Evolution: In Search of Solutions (Springer Optimization and Its Applications) , 2006 .

[17]  Pierre L'Ecuyer,et al.  Testing random number generators , 1992, WSC '92.

[18]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[19]  James A. Foster,et al.  The Quality of Pseudo-Random Number Generations and Simple Genetic Algorithm Performance , 1997, ICGA.

[20]  Erick Cantú-Paz,et al.  On Random Numbers and the Performance of Genetic Algorithms , 2002, GECCO.