Advanced Meso-Scale Modelling to Study the Effective Thermo-Mechanical Parameter in Solid Geomaterial

The effects of coupled thermo-mechanical processes under consideration of micro-fracturing of the solid geomaterial on mechanical and thermal properties of geomaterials are investigated and subsequently simulated using advance Lattice Element Method (LEM). As a result of that extension, the alteration of effective parameter due to structural changes become numerically understandable. Hence, the simulation of the coupled processes on the meso-scale helps to develop and validate reliable identification method for real cases. The obtained results make it obvious that LEM has a large potential for fracture problems in geomaterials.

[1]  Y. Tsuji,et al.  Discrete particle simulation of two-dimensional fluidized bed , 1993 .

[2]  C. Clauser,et al.  Thermal Conductivity of Rocks and Minerals , 2013 .

[3]  Yonggang Zheng,et al.  A multi-scale method for thermal conduction simulation in granular materials , 2011 .

[4]  Juergen H. Schön,et al.  Physical Properties of Rocks: A Workbook , 2011 .

[5]  Paul Zulli,et al.  Evaluation of effective thermal conductivity from the structure of a packed bed , 1999 .

[6]  Majid Bahrami,et al.  Thermal Joint Resistances of Conforming Rough Surfaces with Gas-Filled Gaps , 2004 .

[7]  J. Mier,et al.  3D lattice type fracture model for concrete , 2003 .

[8]  H. Xing,et al.  A DEM study on the effective thermal conductivity of granular assemblies , 2011 .

[9]  Yonggang Zheng,et al.  A homogenization technique for heat transfer in periodic granular materials , 2012 .

[10]  Gerry E. Schneider,et al.  Review of Thermal Joint Resistance Models for Non-Conforming Rough Surfaces in a Vacuum , 2003 .

[11]  J. Kuipers,et al.  A numerical model of gas-fluidized beds , 1992 .

[12]  W. Woodside,et al.  Thermal Conductivity of Porous Media. I. Unconsolidated Sands , 1961 .

[13]  Hans J. Herrmann,et al.  A vectorizable random lattice , 1992 .

[14]  M. Yovanovich,et al.  Effective thermal conductivity of rough spherical packed beds , 2006 .

[15]  Yu-Hsing Wang,et al.  A particulate-scale investigation of cemented sand behavior , 2008 .

[16]  Majid Bahrami,et al.  Review of Thermal Joint Resistance Models for Nonconforming Rough Surfaces , 2006 .

[17]  I. Tavman,et al.  Measurement of effective thermal conductivity of wheat as a function of moisture content , 1998 .

[18]  N. Gegenhuber,et al.  New approaches for the relationship between compressional wave velocity and thermal conductivity , 2012 .

[19]  Tae Sup Yun,et al.  Three-dimensional random network model for thermal conductivity in particulate materials , 2010 .

[20]  Laurent Daudeville,et al.  Numerical Study of Compressive Behavior of Concrete at High Strain Rates , 1999 .

[21]  E. Ramm,et al.  On the application of a discrete model to the fracture process of cohesive granular materials , 2002 .

[22]  G. Batchelor,et al.  Thermal or electrical conduction through a granular material , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  B. Lawn Fracture of Brittle Solids by Brian Lawn , 1993 .

[24]  J. Sarout,et al.  Study cases of thermal conductivity prediction from P-wave velocity and porosity , 2015 .

[25]  F. Wuttke,et al.  Numerical analysis of heat conduction in granular geo-material using lattice element method , 2016 .

[26]  Kenichi Soga,et al.  Modelling fracturing process of geomaterial using Lattice Element Method , 2015 .