Sub- and supergradients of envelopes, semicontinuous closures, and limits of sequences of functions

Envelopes or of parametric families of functions are typical non-differentiable functions arising in non-smooth analysis, optimization theory, control theory, the theory of generalized solutions of first-order partial differential equations, and other applications. In this survey formulae are obtained for sub- and supergradients of envelopes of lower semicontinuous functions, their corresponding semicontinuous closures, and limits and -limits of sequences of functions. The unified method of derivation of these formulae for semicontinuous functions is based on the use of multidirectional mean-value inequalities for sets and non-smooth functions. These results are used to prove generalized versions of the Jung and Helly theorems for manifolds of non-positive curvature, to prove uniqueness of solutions of some optimization problems, and to get a new derivation of Stegall's well-known variational principle for smooth Banach spaces. Also, necessary conditions are derived for -maximizers of lower semicontinuous functions. Bibliography: 47 titles.

[1]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[2]  R. Phelps Convex Functions, Monotone Operators and Differentiability , 1989 .

[3]  Yu. S. Ledyaev On Generic Existence and Uniqueness in Nonconvex Optimal Control Problems , 2004 .

[4]  F. Clarke,et al.  Complements, approximations, smoothings and invariance properties , 1997 .

[5]  Qiji Zhu,et al.  Clarke-Ledyaev mean value inequalities in smooth Banach spaces , 1998 .

[6]  D. Varberg Convex Functions , 1973 .

[7]  Vladimir F. Demyanov Minimax: Directional Differentiability , 2009, Encyclopedia of Optimization.

[8]  R. Deville Smooth variational principles and non-smooth analysis in Banach spaces , 1995 .

[9]  V. F. Dem'yanov On the solution of several minimax problems. I , 1966 .

[10]  E. D. Giorgi,et al.  Γ — Convergence and calculus of variations , 1983 .

[11]  C. Stegall Optimization of functions on certain subsets of Banach spaces , 1978 .

[12]  B. N. Pshenichnyi Necessary Conditions for an Extremum , 1971 .

[13]  Jonathan M. Borwein,et al.  A survey of subdifferential calculus with applications , 2002 .

[14]  F. Clarke Methods of dynamic and nonsmooth optimization , 1989 .

[15]  I. Ekeland Nonconvex minimization problems , 1979 .

[16]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[17]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[18]  J. Danskin The Theory of Max-Min and its Application to Weapons Allocation Problems , 1967 .

[19]  Peter R. Wolenski,et al.  Proximal Analysis and Minimization Principles , 1995 .

[20]  E. Barron,et al.  OPTIMAL CONTROL AND SEMICONTINUOUS VISCOSITY SOLUTIONS , 1991 .

[21]  Frank H. Clarke,et al.  Mean value inequalities in Hilbert space , 1994 .

[22]  Frank H. Clarke,et al.  Mean value inequalities , 1994 .

[23]  R. Rockafellar,et al.  On the subdifferentiability of convex functions , 1965 .

[24]  Yu. S. Ledyaev,et al.  Multidirectional Mean Value Inequalities and Weak Monotonicity , 2005 .

[25]  R. DeVille,et al.  A smooth variational principle with applications to Hamilton-Jacobi equations in infinite dimensions , 1993 .

[26]  Qiji J. Zhu,et al.  Helly's Intersection Theorem on Manifolds of Nonpositive Curvature , 2006 .

[27]  Yu. S. Ledyaev,et al.  Nonsmooth analysis on smooth manifolds , 2007 .

[28]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[29]  B. V. Dekster The Jung Theorem in metric spaces of curvature bounded above , 1997 .

[30]  B. N. Pshenichnyi Dual method in extremum problems. I , 1965 .

[31]  E. Barron,et al.  Semicontinuous Viscosity Solutions For Hamilton–Jacobi Equations With Convex Hamiltonians , 1990 .

[32]  I. Ekeland,et al.  Generic Fréchet-differentiability and perturbed optimization problems in Banach spaces , 1976 .

[33]  Yu. S. Ledyaev,et al.  Implicit Multifunction Theorems , 1998 .

[34]  V. F. Demʹi︠a︡nov,et al.  Introduction to minimax , 1976 .

[35]  J. Danskin The Theory of Max-Min, with Applications , 1966 .

[36]  Jonathan M. Borwein,et al.  On Fan's minimax theorem , 1986, Math. Program..

[37]  M. Gromov,et al.  Manifolds of Nonpositive Curvature , 1985 .

[38]  R. Deville Stability of subdifferentials of nonconvex functions in Banach spaces , 1994 .

[39]  B. Mordukhovich Variational Analysis and Generalized Differentiation II: Applications , 2006 .

[40]  V. N. Solov'ev,et al.  The subdifferential and the directional derivatives of the maximum of a family of convex functions , 1998 .

[41]  J. Borwein,et al.  Techniques of variational analysis , 2005 .