Fully automated incremental evaluation of MP2 and CCSD(T) core, core-valence and valence correlation energies

[1]  D. Tew,et al.  Automated incremental scheme for explicitly correlated methods. , 2010, The Journal of chemical physics.

[2]  J. Friedrich,et al.  Fully Automated Implementation of the Incremental Scheme for Correlation Energies , 2010 .

[3]  K. Fink,et al.  The method of local increments for the calculation of adsorption energies of atoms and small molecules on solid surfaces. Part I. A single Cu atom on the polar surfaces of ZnO. , 2009, Physical chemistry chemical physics : PCCP.

[4]  Trygve Helgaker,et al.  Implementation of the incremental scheme for one-electron first-order properties in coupled-cluster theory. , 2009, The Journal of chemical physics.

[5]  Masato Kobayashi,et al.  Divide-and-conquer-based linear-scaling approach for traditional and renormalized coupled cluster methods with single, double, and noniterative triple excitations. , 2009, The Journal of chemical physics.

[6]  Wei Li,et al.  Local correlation calculations using standard and renormalized coupled-cluster approaches. , 2009, The Journal of chemical physics.

[7]  B. Paulus,et al.  Electron correlation contribution to the N2O/ceria(111) interaction , 2009 .

[8]  Hans-Joachim Werner,et al.  Local explicitly correlated coupled-cluster methods: efficient removal of the basis set incompleteness and domain errors. , 2009, The Journal of chemical physics.

[9]  A. Rheingold,et al.  Classical versus bridged allyl ligands in magnesium complexes: the role of solvent. , 2009, Journal of the American Chemical Society.

[10]  Mark S. Gordon,et al.  Accurate methods for large molecular systems. , 2009, The journal of physical chemistry. B.

[11]  K. Walczak,et al.  Evaluation of core and core–valence correlation contributions using the incremental scheme , 2009 .

[12]  Michael Dolg,et al.  Fully Automated Incremental Evaluation of MP2 and CCSD(T) Energies: Application to Water Clusters. , 2009, Journal of chemical theory and computation.

[13]  Michael Dolg,et al.  Implementation and performance of a domain-specific basis set incremental approach for correlation energies: applications to hydrocarbons and a glycine oligomer. , 2008, The Journal of chemical physics.

[14]  Cesare Pisani,et al.  Periodic local MP2 method for the study of electronic correlation in crystals: Theory and preliminary applications , 2008, J. Comput. Chem..

[15]  J. Friedrich,et al.  Evaluation of incremental correlation energies for open-shell systems: application to the intermediates of the 4-exo cyclization, arduengo carbenes and an anionic water cluster. , 2008, The journal of physical chemistry. A.

[16]  Masato Kobayashi,et al.  Extension of linear-scaling divide-and-conquer-based correlation method to coupled cluster theory with singles and doubles excitations. , 2008, The Journal of chemical physics.

[17]  Christian Ochsenfeld,et al.  Tighter multipole-based integral estimates and parallel implementation of linear-scaling AO-MP2 theory. , 2008, Physical chemistry chemical physics : PCCP.

[18]  J. Friedrich,et al.  Using symmetry in the framework of the incremental scheme: Molecular applications , 2008 .

[19]  Heather Netzloff,et al.  Ab initio energies of nonconducting crystals by systematic fragmentation. , 2007, The Journal of chemical physics.

[20]  J. Friedrich,et al.  Energy screening for the incremental scheme: application to intermolecular interactions. , 2007, The journal of physical chemistry. A.

[21]  J. Friedrich,et al.  Error analysis of incremental electron correlation calculations and applications to clusters and potential energy surfaces , 2007 .

[22]  M. Dolg,et al.  Evaluation of electronic correlation contributions for optical tensors of large systems using the incremental scheme. , 2007, The Journal of chemical physics.

[23]  J. Olsen,et al.  General biorthogonal projected bases as applied to second-order Møller-Plesset perturbation theory. , 2007, The Journal of chemical physics.

[24]  Michael Dolg,et al.  Fully automated implementation of the incremental scheme: application to CCSD energies for hydrocarbons and transition metal compounds. , 2007, The Journal of chemical physics.

[25]  Jun Li,et al.  Basis Set Exchange: A Community Database for Computational Sciences , 2007, J. Chem. Inf. Model..

[26]  R. Nesbet Atomic Bethe‐Goldstone Equations , 2007 .

[27]  M. Nooijen,et al.  Dynamically screened local correlation method using enveloping localized orbitals. , 2006, The Journal of chemical physics.

[28]  I. Røeggen An ab initio study of the fcc and hcp structures of helium. , 2006, The Journal of chemical physics.

[29]  Cristina Puzzarini,et al.  Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements , 2005 .

[30]  Martin Head-Gordon,et al.  A local correlation model that yields intrinsically smooth potential-energy surfaces. , 2005, The Journal of chemical physics.

[31]  Guntram Rauhut,et al.  Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data , 2005 .

[32]  Wei Li,et al.  An efficient fragment-based approach for predicting the ground-state energies and structures of large molecules. , 2005, Journal of the American Chemical Society.

[33]  Michael A Collins,et al.  Approximate ab initio energies by systematic molecular fragmentation. , 2005, The Journal of chemical physics.

[34]  Rodney J Bartlett,et al.  A natural linear scaling coupled-cluster method. , 2004, The Journal of chemical physics.

[35]  Kazuo Kitaura,et al.  Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. , 2004, The Journal of chemical physics.

[36]  John Z. H. Zhang,et al.  Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy , 2003 .

[37]  Kirk A. Peterson,et al.  Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited , 2002 .

[38]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[39]  S. L. Dixon,et al.  Linear scaling molecular orbital calculations of biological systems using the semiempirical divide and conquer method , 2000, J. Comput. Chem..

[40]  Martin Head-Gordon,et al.  Closely approximating second-order Mo/ller–Plesset perturbation theory with a local triatomics in molecules model , 2000 .

[41]  M. Dolg,et al.  Ab initio treatment of electron correlations in polymers: lithium hydride chain and beryllium hydride polymer , 2000, cond-mat/0002124.

[42]  Beate Paulus,et al.  Ab initio calculation of ground-state properties of rare-gas crystals. , 1999 .

[43]  P. Fulde,et al.  WAVE-FUNCTION-BASED CORRELATED AB INITIO CALCULATIONS ON CRYSTALLINE SOLIDS , 1999, cond-mat/9905335.

[44]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[45]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[46]  Martin Head-Gordon,et al.  Non-iterative local second order Møller–Plesset theory , 1998 .

[47]  F. Weigend,et al.  RI-MP2: first derivatives and global consistency , 1997 .

[48]  David Feller,et al.  The role of databases in support of computational chemistry calculations , 1996, J. Comput. Chem..

[49]  Hans-Joachim Werner,et al.  Local treatment of electron correlation in coupled cluster theory , 1996 .

[50]  Weitao Yang,et al.  A density‐matrix divide‐and‐conquer approach for electronic structure calculations of large molecules , 1995 .

[51]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[52]  Stoll,et al.  Correlation energy of diamond. , 1992, Physical review. B, Condensed matter.

[53]  Hermann Stoll,et al.  The correlation energy of crystalline silicon , 1992 .

[54]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[55]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[56]  Peter Pulay,et al.  Fourth‐order Mo/ller–Plessett perturbation theory in the local correlation treatment. I. Method , 1987 .

[57]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[58]  Peter Pulay,et al.  Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory , 1986 .

[59]  I. R. eggen Derivation of an extended geminal model , 1983 .

[60]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[61]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .

[62]  Donald G Truhlar,et al.  Evaluation of the Electrostatically Embedded Many-Body Expansion and the Electrostatically Embedded Many-Body Expansion of the Correlation Energy by Application to Low-Lying Water Hexamers. , 2008, Journal of chemical theory and computation.

[63]  B. Paulus,et al.  Electron correlation effects on structural and cohesive properties of closo-hydroborate dianions (BnHn)2− (n= 5–12) and B4H4 , 2001 .

[64]  P Pulay,et al.  Local Treatment of Electron Correlation , 1993 .