A mathematical theory of resources

Many fields of science investigate states and processes as resources. Chemistry, thermodynamics, Shannon's theory of communication channels, and the theory of quantum entanglement are prominent examples. Questions addressed by these theories include: Which resources can be converted into which others? At what rate can many copies of one resource be converted into many copies of another? Can a catalyst enable a conversion? How to quantify a resource? We propose a general mathematical definition of resource theory. We prove general theorems about how resource theories can be constructed from theories of processes with a subclass of processes that are freely implementable. These define the means by which costly states and processes can be interconverted. We outline how various existing resource theories fit into our framework, which is a first step in a project of identifying universal features and principles of resource theories. We develop a few general results concerning resource convertibility.

[1]  Tom Leinster,et al.  A Characterization of Entropy in Terms of Information Loss , 2011, Entropy.

[2]  Aleks Kissinger,et al.  Categories of quantum and classical channels , 2016, Quantum Inf. Process..

[3]  F. Segal,et al.  A CHARACTERIZATION OF FIBRANT SEGAL CATEGORIES , 2006, math/0603400.

[4]  M. Horodecki,et al.  Reversible transformations from pure to mixed states and the unique measure of information , 2002, quant-ph/0212019.

[5]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[6]  B. Coecke Quantum picturalism , 2009, 0908.1787.

[7]  Michal Horodecki,et al.  The second laws of quantum thermodynamics , 2013, Proceedings of the National Academy of Sciences.

[8]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[9]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[10]  R. Spekkens,et al.  Extending Noether’s theorem by quantifying the asymmetry of quantum states , 2014, Nature Communications.

[11]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[12]  R. Spekkens,et al.  The theory of manipulations of pure state asymmetry: I. Basic tools, equivalence classes and single copy transformations , 2011, 1104.0018.

[13]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[14]  Robert W. Spekkens,et al.  Asymmetry properties of pure quantum states , 2012 .

[15]  Christian Urban,et al.  Categorical proof theory of classical propositional calculus , 2006, Theor. Comput. Sci..

[16]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[17]  Tom Leinster Higher Operads, Higher Categories , 2003 .

[18]  Laura G. Sánchez-Lozada,et al.  Correction: Corrigendum: Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome , 2013, Nature Communications.

[19]  B. Coecke Introducing categories to the practicing physicist , 2008, 0808.1032.

[20]  Isar Stubbe,et al.  Short Introduction to Enriched Categories , 2000 .

[21]  S. Lane Categories for the Working Mathematician , 1971 .

[22]  Garrett Birkhoff Lattice-Ordered Groups , 1942 .

[23]  F. Brandão,et al.  Resource theory of quantum states out of thermal equilibrium. , 2011, Physical review letters.

[24]  G Chiribella,et al.  Quantum circuit architecture. , 2007, Physical review letters.

[25]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[26]  Joachim Cuntz,et al.  Dimension functions on simpleC*-algebras , 1978 .

[27]  Aleks Kissinger,et al.  Categories of Quantum and Classical Channels (extended abstract) , 2012, QPL.

[28]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[29]  A. J. Short,et al.  Work extraction and thermodynamics for individual quantum systems , 2013, Nature Communications.

[30]  Joachim Cuntz,et al.  Dimension Functions on Simple C *-Algebras , 2005 .

[31]  R. Spekkens,et al.  The resource theory of quantum reference frames: manipulations and monotones , 2007, 0711.0043.

[32]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[33]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[35]  John C. Baez,et al.  Physics, Topology, Logic and Computation: A Rosetta Stone , 2009, 0903.0340.

[36]  B. Coecke,et al.  Categories for the practising physicist , 2009, 0905.3010.

[37]  R. Spekkens,et al.  An information-theoretic account of the Wigner-Araki-Yanase theorem , 2012, 1212.3378.

[38]  Andreas J. Winter,et al.  A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.

[39]  R. Spekkens,et al.  Measuring the quality of a quantum reference frame: The relative entropy of frameness , 2009, 0901.0943.

[40]  Nicole Yunger Halpern,et al.  The resource theory of informational nonequilibrium in thermodynamics , 2013, 1309.6586.

[41]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[42]  T. Rudolph,et al.  The Wigner–Araki–Yanase theorem and the quantum resource theory of asymmetry , 2012, 1209.0921.

[43]  R. Spekkens,et al.  Modes of asymmetry: The application of harmonic analysis to symmetric quantum dynamics and quantum reference frames , 2013, 1312.0680.

[44]  John C. Baez,et al.  A Bayesian Characterization of Relative Entropy , 2014, ArXiv.

[45]  Jonathan Oppenheim,et al.  Are the laws of entanglement theory thermodynamical? , 2002, Physical review letters.

[46]  D. Janzing,et al.  Thermodynamic Cost of Reliability and Low Temperatures: Tightening Landauer's Principle and the Second Law , 2000, quant-ph/0002048.

[47]  Somshubhro Bandyopadhyay,et al.  Classification of nonasymptotic bipartite pure-state entanglement transformations , 2002 .

[48]  Giulio Chiribella,et al.  Quantum Theory from First Principles - An Informational Approach , 2017 .

[49]  Bob Coecke,et al.  An alternative Gospel of structure: order, composition, processes , 2013, Quantum Physics and Linguistics.

[50]  Paul Skrzypczyk,et al.  Thermodynamics for individual quantum systems , 2013 .